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Fuzzy Relation-Based Fuzzy Neural-Networks Using a Hybrid
Identification Algorithm

Ho-Sung Park and Sung-Kwun Oh

Abstract: In this paper, we introduce an identification method in Fuzzy Relation-based Fuzzy
Neural Networks (FRENN) through a hybrid identification algorithm. The proposed FRFNN
modeling implement system structure and parameter identification in the efficient form of “If...,
then...” statements, and exploit the theory of system optimization and fuzzy rules. The
FRFNN modeling and identification environment realizes parameter identification through a
synergistic usage of genetic optimization and complex search method. The hybrid identification
algorithm is carried out by combining both genetic optimization and the improved complex
method in order to guarantee both global optimization and local convergence. An aggregate ob-
jective function with a weighting factor is introduced to achieve a sound balance between ap-
proximation and generalization of the model. The proposed model is experimented with using
two nonlinear data. The obtained experimental results reveal that the proposed networks exhibit
high accuracy and generalization capabilities in comparison to other models.

Keywords: Fuzzy relation-based fuzzy neural networks, simplified and linear fuzzy inference,
hybrid identification, genetic algorithms, improved complex method, aggregate objective func-
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tion.

1. INTRODUCTION

As is widely known, both fuzzy logic systems and
neural network systems are aimed at exploiting hu-
man-like knowledge processing capability. Recently,
fuzzy logic systems and neural networks have been
shown to obtain successful results in system informa-
tion can model the qualitative aspects of human
knowledge and reasoning processes without employ-
ing precise quantitative analyses. Much research has
been done on applications of fuzzy neural network
(FNN) systems, which combine the capability of
fuzzy reasoning in handing uncertain information and
the capability of neural networks in learning from
processes [1-3]

In the early approaches, the generation of the fuzzy
rules and the adjustment of its membership functions
were done by trial and error and/or operator’s ex-
perience. Subsequently, the designers find it difficult
to develop adequate fuzzy rules and membership
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functions to reflect the essence of the data. Moreover,
some information gets lost or ignored on purpose
when human operators articulate their experience in
the form of linguistic rules. A collection of manually
developed fuzzy rules is usually suboptimal. As a
consequence, there is a genuine need for an optimiza-
tion environment to construct and/or adjust a collec-
tion of linguistic rules. While there has been impres-
sive panoply of neuro-fuzzy approaches, the compre-
hensive solution is still to be developed. Interestingly,
in this synergistic arrangement, they tend to compen-
sate disadvantages of these two technologies when
used in the context of fuzzy relation-based models.
The essential advantage of neural networks is in their
adaptive nature and learning from historical data. In
the context of rules, the learning concerns the
parameters of the membership functions.

In this paper, we consider an extension of the net-
work by considering the fuzzy partition realized in
terms of fuzzy relations. That is, the structure of the
network is constructed by partitioning fuzzy input-
output space using all variables simultaneously. The
networks are classified into the two main categories
according to the type of fuzzy inference. We distin-
guish between a simplified and linear fuzzy inference.
The FRENN combines fuzzy “if-then” rules with neu-
ral networks that are learned by means of the stan-
dards back-propagation (BP). And using the hybrid
identification algorithm, we further optimize the
FRFNN model. The hybrid identification algorithm
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dwells on the ideas of genetic algorithms (GAs) [4-6]
and improved complex algorithm [7,8]. GAs is global
optimization techniques that avoid many shortcom-
ings existing in conventional search techniques when
operating in large and complex problem spaces. De-
spite their successes reported in many publications,
by combining these optimization tasks we end up
with a problem that is highly nonlinear and may not
fit well to the domain of gradient-based techniques.
To alleviate the problem, we propose to use an auto-
tuning algorithm that is an adaptation of the improved
complex algorithm. Genetic techniques have shown
to be flexible meaning that they are capable of carry-
ing out a comprehensive optimization of the parame-
ters of the FRFNN model. However, they do not
guarantee convergence to a global optimum. So to
speak more specifically they help determine just ini-
tial regions (intervals) of the membership functions
used in the model. In order to solve this problem, we
use improved complex algorithm that exploits the
convergence of problem-specific technique.

We introduce an aggregate objective function [7]
that takes into account both training data and testing
data. This index aims at achieving a sound balance
between approximation and prediction capabilities of
the proposed model. Experimentally, the proposed
model is discussed for NOx emission process data of
gas turbine power plant [9] and activated sludge
process in sewage treatment system [7].

2. FUZZY RELATION-BASED FUZZY-
NEURAL NETWORKS

The structure of FRFNN emerges at a junction of
fuzzy sets and neural networks. In this section, we
discuss two types of “if-then” rules along with their
development mechanisms. We use fuzzy spaces parti-
tioning in terms of all variables based on fuzzy rela-
tion-based approach. We distinguish between two
classes (categories) of basic models. One uses a so-
called simplified inference scheme that is used in the
conclusion part of the rules. In the second case the
conclusion part comes with a linear inference.

2.1. Simplified fuzzy inference-based FRFNN

Let us consider an extension of the network by
considering the fuzzy partition realized in terms of
fuzzy relations. The fuzzy partitions formed for the
all variables lead us to the topology visualized in Fig.
1. Fig. 1 illustrates architecture of such FRFNN in
case of two inputs and single output, where each in-
put assumes three membership functions. The “cir-
cles” denote units of the FRFNN, the neuron denoted
by I realizes a Cartesian product. The outputs of
these neurons are taken as a product of all the incom-
ing signals. The “N” identifies a normalization proce-
dure applied to the outputs taken as a product of

membership grades. The “Y.” neuron is described by
linear sum.

Making use of the language of the rule-based sys-
tems, the structure translates into the following col-
lection of rules.

R :If X is Ay and - x, is Ay, then y; =w;,.

D

The fuzzy rules in (1) constitute an overall network of
the FRENN as shown in Fig. 1. The output f; of each

node generates a final output ¥ of the form
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The learning algorithm in FRFNN is realized by
adjusting connection weights w; of the neurons and as
such it follows a standard Back-Propagation (BP)
algorithm. We use the Euclidean error as a perform-
ance measure.

_ A N2
Ep = (yp - yp) s (3)
where E, is an error for the p-th data, y, is the p-th

target output data and p stands for the p-th actual

output of the model for this specific data point. For N
input-output data pairs, an overall (global) perform-
ance index comes as a sum of the errors.

1Y . 2
E=—%0, - §) )
N &

As far as learning is concerned, the connections
change as follows:

w(new) = wlold) + Aw, (5)

where the update formula follows the gradient descent
method.

Fig. 1. Simplified fuzzy inference-based FRFNN
structure.
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Each part of right side in (6) is expressed in the form,

—25: =—5—y?:(y,,—9p>2=2<y,,—9,,),
%’ =1, a% = [ Q)
Therefore, Aw; summarizes as follows:
Aw, = 207-(y, = 3,) B ®)

with 77 being a positive learning rate.

Quite commonly to accelerate convergence, a mo-
mentum term is being added to the learning expres-
sion. Combining (9) and a momentum term, we have,

Aw, =2-7-(y, = $,)- B + &, (©) = w,(t = 1) (9)

Here, the momentum coefficient, ¢, is constrained to
the unit interval.

2.2. Linear fuzzy inference-based FRFNN

The conclusion is expressed in the form of a linear
relationship between inputs and output variable. In
case of linear inference-based FRFNN, the model of
the proposed FNN comes in the form shown in Fig. 2.

Making use of the language of the rule-based sys-
tems, the structure translates into the following col-
lection of rules.

R': If xjis Ay and --- x; is Ay,

10)
then Cy; = way; + xyway; + -+ x,way,;.

The fuzzy rules in (10) constitute an overall network

Fig. 2. Linear fuzzy inference-based FRFNN struc-
ture.

of the FRENN as shown in Fig. 2. The output f; of
each node generates a final output y of the form -
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The learning algorithm in FRFNN is realized by
adjusting connection weights wa, and way; of the
neurons and as such it follows a standard BP algo-
rithm. We use the Euclidean error as a performance
measure.

A 2
Ep =(yp - yp) s (12)
where E, is an error for the p-th data, y, is the p-th
target output data and y p stands for the p-th actual

output of the model for this specific data point. For N
input-output data pairs, an overall (global) perform-
ance index comes as a sum of the errors.

1 . 2
E==>(, - 3,)". (13)
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As far as learning is concerned, the connections
change as follows:
wa(new) = walold) + Awa, (14)

where the update formula follows the gradient de-
scent method.

Away; =77-[— Ep J

wag; (15)
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Each part of right side in (15) and (16) are expressed
in the form,
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Therefore, Away, and Awa;; summarize as follow:

Awag = 2-7-(y, = $,) B, (19)

Awag = 2-1-(y, — 5)p)-ﬁi-xssk, 20)
with 77 being a positive learning rate.

Quite commonly to accelerate convergence, a mo-
mentum term is being added to the learning expres-
sion. Combining (19), (20) and a momentum term, we
have,

Away; =2-17- -V, I
0 n-,—Y,)H @

+a(way; (t) — wag, (t - 1)),
Away, =21 (y, =3 ,) B - x55;

(22)
+o(way; (t) —way,; (t —1))

Here, the momentum coefficient, ¢, is constrained to
the unit interval.

3. OPTIMIZATION OF FRFNN BY THE
HYBRID IDENTIFICATION ALGORITHM

The task of optimizing a complex system com-
prises at least two problems for the system designer.
First, a class of optimization algorithms must be cho-
sen that is applicable to the system. Second, various
parameters of the optimization algorithm need to be
tuned.

Genetic algorithms are optimization techniques
based on the principles of natural evolution. In es-
sence, they are search algorithms that use operations
found in natural genetic to guide the journey through
a search space. GAs have been theoretically and em-
pirically proven to provide robust search capabilities
in complex spaces offering a valid approach to prob-
lems requiring efficient and effective searching.

Traditional GAs, though robust, is generally not the
most successful optimization algorithm for any par-
ticular domain. That is, there is no guarantee that a
GAs will give an optimal solution or arrangement,
only that the solution will be near-optimal in the light
of the specific fitness function used in the evaluation
of the many possible solutions generated. The Com-
plex Method is based on a sequential direct search
technique, and no derivatives are required. But it has
difficult problem about selection of initial value.

NO Objective function with
a weighting factor

Configulation of initial points }

Improved Complex !
Method i

Hybrid Identification Algorithm

Global Solution |

Fig. 3. A géneral flowchart of the hybrid identifica-
tion algorithm outlining main development
phases.

Therefore, if we select incorrect initial value, it may
not converge to the local minimum point.

In this study, the hybrid identification algorithm for
dynamic parameters of relation-based fuzzy neural
networks is sought, which combines the abilities of
GAs and improved complex method thus resulting in
an improved performance.

To determine suitable values of the parameters for a
given problem, a hybrid identification algorithm is de-
veloped. An overall flowchart of the design process
indicating clearly how optimization mechanisms of the
FRFNN model are employed is visualized in Fig. 3.

3.1. Genetic algorithms

The need to handle optimization problems whose
objective  functions are complex and non-
differentiable arises in many areas of system analysis
and synthesis. While there are a number of analytic
and numerical optimization techniques aimed at these
tasks, there exists a large class of problems that are
out of reach by standard gradient-oriented techniques.
Among objective functions which are highly chal-
lenging to these classical methods are those that are
non-convex, multi-modal, and noisy [5].

Genetic algorithms [4-6] have proven to be useful
in optimization of such problems because of their
ability to efficiently use historical information to ob-
tain new solutions with enhanced performance and a
global nature of search supported there. Genetic algo-
rithms are also theoretically and empirically proven to
support robust search in complex search spaces.
Moreover they do not get trapped in local minima as
opposed to gradient decent techniques being quite
susceptible to this shortcoming. GAs is population-
based optimization techniques.

The search of the solution space is completed with
the aid of several genetic operators. There are three
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basic genetic operators used in any GA- supported
search, that is reproduction, crossover, and mutation.
Reproduction is a process in which the mating pool
for the next generation is chosen. Individual strings
are copied into the mating pool according to their
fitness function values. Crossover usually proceeds in
two steps. First, members from the mating pool are
mated at random. Second, each pair of strings under-
goes crossover as follows: a position / along the string
is selected uniformly at random from the interval [1,
[-1], where [ is the length of the string. Two new
strings are created by swapping all characters be-
tween the positions k and /. Mutation is a random al-
teration of the value of a string position. In a binary
coding, mutation means changing a zero to a one or
vice versa. Mutation occurs with small probability.
Those operators, combined with the proper definition
of the fitness function, constitute the main body of the
genetic computing.

In this paper, for the optimization of the FRFNN
model, GAs use the serial method of binary type, rou-
lette-wheel in the selection operator, one-point cross-
over in the crossover operator, and invert in the muta-
tion operator. Here, we use 100 generations, 60 popu-
lations, 10 bits per string, crossover rate equal to 0.6,
and mutation probability equal to 0.1. A chromosome
used in the genetic optimization consists of a string
including vertical point of membership functions for
each input variable, learning rate, and momentum
coefficient.

3.2. Improved complex algorithms

Usually, by combining these optimization tasks we
end up with a problem that is highly nonlinear and
may not fit well to the domain of gradient-based
techniques. To alleviate the problem, we propose to
use an auto-tuning algorithm that is an adaptation of
the improved complex algorithm [7].

We realize the algorithm by augmenting the
method of a simplex concept to the complex method-
constrained optimization technique. The proposed
optimal auto-tuning algorithm known as the improved
complex algorithm, is the constrained complex
method of the form.

Minimize f(X) (23)
subject to

e (<0, j=1,2-m (24)

XP<x,<x® = i=1,2n (25)

where the superscripts / and u denote the lower and
upper bound of the corresponding variable.

In essence, it can be viewed as a sequence of six
basic steps.

<Step 1>

The parameters to be optimized include the ele-

ments of the FNN model. They include the apexes of
membership function, learning rates, and momentum
coefficients.

They are defined as X,=(x;*, x,".~ x.* ; k=1, 2,~, n,
n+1,~, m) and form the points in an “n” dimensional
space. In general, the value of “m” is selected as be-
ing equal 2n (where, n is the number of the initial
vertices).

<Step 2>

The initial values of a, y and f is specified using
the Reflection, Expansion and Contraction of simplex
concept as follows:

1) Reflection : X, = X, + a(X, - X}), (26)

IT) Expansion : X, = X, + (X, - X,) , 27

IT) Contraction : X, = X, + (X, — X,). 28
<Step 3>

X, and X, are the vertices corresponding to the
maximum function value f(X,) and the minimum
function value f{X)). X, is the centroid of all the points
X, except i=h. The reflection point X, is given by
(26), with X, = max AX), (=1, 2, ...k),

1 X, =% |
X, =—0Q X, - X;) and a=;1—-:

e R

If X, may not satisfy the constraints, a new point X,
is generated by X, = (X, + X,)/2. This process is re-
peated until X, satisfies the constraints.

<Step 4>

If a reflection process gives a point X, for which
AX,)) < fiX), i.e. if the reflection produces a new
minimum, we expand X, to X, by (27), with

_ ”Xe -X, ”

X, x|

o

>1.

If X, does not satisfy the constraints, a new point
X, is generated by X, = (X, + X,)/2. This process is
repeated until X, satisfies the constraints. If AX,) <
JIX)), we replace the point X, by X, and restart the
process of reflection. On the other hand, if fiX,) >
JiX)), we replace the point X, by X,, and start the re-
flection process again.

<Step 5>

If the reflection process produces a point X, for
which AX,) > X)), for all i except i=h. If AX,) <
fXy), then we replace the point X}, by X,. In this case,
we contract the simplex as in (28), with

X -%,]
P %%,

changing the previous point X;. If X, does not satisfy
the constraints, a new point X, is generated with X, =
(X, + X.)/2. This process is conducted repeatedly un-
til X, satisfies the constraints. If the contraction proc-
ess produces a point X, for which AX,) < min[{X}),

If AX,) > fiX;), we use X, without



294 International Journal of Control, Automation, and Systems Vol. 1, No. 3, September 2003

SIX)I, we replace the point X, by X.. And proceed
with the reflection again. On the other hand, if AX,) >
min[f(X,), AX,)], we replace all X; by (X; + X;)/2, and
start the reflection process again.

<Step 6>

This method is assumed to have converged when-
ever the standard deviation of the function at the ver-
tices of the current simplex is smaller than some pre-
scribed small quantity as follows:

n+l B 212
Q:{Z[f(xn f(Xo)]} ce. @)

n+l1

i=1

If Q does not satisfy (29), we go to step 3. In this
study, the reflection, expansion, and contraction coef-
ficients which are the initial parameters of the im-
proved complex algorithm are set as a=1, $=0.5,
and y=2, respectively.

3.3. Identification algorithms by hybrid scheme

GAs is global optimization techniques that avoid
many shortcomings exhibited in conventional search
techniques when completed in a large and complex
space. However, GAs are a blind search and does not
guarantee local convergence. That is, GAs tend to
efficiently explore various regions of the decision
space with a high probability of finding improved
solutions [4]. While there is no guarantee that the fi-
nal solution obtained using a GA is the global optimal
solution to a problem.

The complex method is a mathematical program-
ming technique that prescribes a systematic procedure
for obtaining a local optimal solution to a nonlinear,
constrained optimization problem. The problem with
this method is about a selection of a starting point.

To alleviate these difficulties, we consider the hy-
brid identification algorithm. It combines genetic al-
gorithm effectively with the improved complex
method to guarantee both global optimization and
local convergence. The features of the hybrid identifi-
cation algorithm are described as follows.

1) GA can determine optimal parameters in a vast
search space. The improved complex method can find
the optimal parameters of the FNN within a limited
region or a boundary condition, that is to say, when
calculating activation degrees of each rule by the im-
proved complex method through a vast searching
space, overflow is appeared (happened) very often by
generating “0”, because activation degrees of linguis-
tic labels by input of process dataset exceed a bound-
ary region of membership parameters adjusted by the
improved complex method.

2) GAs are an efficient tool for finding a global
minimum area, but there is no guarantee that GAs
will give the best solution in this area (region); usu-
ally we end up with the value that will be a near-

optimal solution. The improved complex method is an
efficient tool for finding an optimal solution consider-
ing a limited search region.

3) GAs, which are optimization techniques based
on the principles of biological evolution, approach
effectively to optimal parameters in a vast searching
space. But the improved complex method based on
geometrical concept has difficulty in finding optimal
parameters in case that initial values are over a lim-
ited region or a boundary condition. Therefore, fol-
lowing the hybrid structure combined with the two
optimization methods of GAs and improved complex
method, we can compute the auto-tuned parameters
(membership parameters of the linguistic labels,
learning ratio, and momentum coefficient.

Hybrid identification algorithm takes the advantage
of GAs and improved complex method, that is, the
algorithm approaches a near-optimal solution and
then rapidly reaches the global minimum. Therefore,
the hybrid algorithm addresses the problems of the
GAs that stay at a near-global minimum without
reaching it and the improved complex method that
exhibits difficulties in determining the initial points
from which a global solution can be reached.

3.4. The objective function with weighting factor

Conventional methods of system modeling con-
struct the models on a basis of some training data and
then evaluate it through the use of the testing data. In
other words, the training data is used only for the
model construction of the target process and the test-
ing data is employed to evaluate the model perform-
ance. There is no guarantee that the required perform-
ance is met because the developed model is custom-
ized only for the training data. We call this aspect as
an over-fitting. Consequently, the overfitting phe-
nomenon can generate significant approximation er-
rors and reduce further use of the model as a sound
predictor. Therefore, the following objective function
(or cost function) is employed to decrease the error
and to increase the predictability (generalization) ca-
pability of the model - that is, the objective function
includes the performance index for training (PI), the
performance index for evaluation (E_PI) that are
combined by means of some weighting factor 6.

The objective function (performance index) is a ba-
sic instrument guiding the evolutionary search in the
solution space [7]. The objective function includes
both the training data and testing data (or validation
data) and comes as a convex sum of two components.

f(PLLE_PI)y=0xPI+(1-8)<E_PI(V_PI).(30)

PI and E_PI (or V_PI) denote the performance in-
dex for the training data and testing data (or valida-
tion data), respectively. Moreover € is a weighting
factor that allows us to strike a balance between the
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performance of the model for the training and testing
data. Depending upon the values of the weighting
factor, several specific cases of the objective function
are worth distinguishing.

¢ Case 1. &=1: (Pl E_PD)=PI

In this case, the objective function becomes f{PI,
E_PI)=PI. Model optimization is based on the train-
ing data and the testing data is not considered. This
case shows outstanding approximation capability but
predictable capability (or generalization) become
lower relatively to approximation capability.

¢ Case 2. &=0: fiPI, E_PI)=E_PI

In this case, the objective function becomes f{PI,
E_PD=E_PI. The model is constructed by the train-
ing data and then optimized from the viewpoint of
E_PI that is obtained by the testing data. The effect of
this method shows low approximation capability but
predictable capability (or generalization) is relatively
increased in comparison to Case 1.

¢ Case 3. &=0.5: f(PI, E_PD=0.5PI + 0.5E_PI

Both PI and E_PI are considered in equal. The ef-
fect of this objective function shows relatively lower
approximation capability than in case of Case 1 and
also it shows lower predictable capability (Generali-
zation) than in case of Case 2.

¢ Case 4. =0(0c[0,1]) : API, E_P)=6xPI+(1-
O)xE_PI

Both PI and E_PI considered and the proper selec-
tion of & establish the direction of optimization to
maintain balance between the approximation and
generalization. In this case, PI is obtained by the
training data and E_PI is obtained from the testing
data of the model constructed by the training data.
Model selection is performed from the minimization
of this aggregate objective function through the ad-
justment (optimization) of parameters related to

FREFNN.

4. EXPERIMENTAL STUDIES

Once the identification methodology has been es-
tablished, one can proceed with intensive experimen-
tal studies. In this section, we provide two numerical
examples to evaluate the advantages and the effec-
tiveness of the proposal approach. These include NOx
emission process data of a gas turbine power plant [9]
and sewage treatment process [7].

4.1. NOx emission process data of gas turbine power
plant

NOx emission process is also modeled using the
data of gas turbine power plants. Till now, almost
NOx emission processes are based on ‘“standard”
mathematical model in order to obtain regulation data
from control process. However, such models do not
develop the relationships between variables of the
NOx emission process and parameters of its model in

an effective manner. A NOXx emission process of a GE
gas turbine power plant located in Virginia, U. S. A,
is chosen in this modeling study.

The input variables include AT (Ambient Temperat
ure at site), CS (Compressor Speed), LPTS (Low
Pressure Turbine Speed), CDP (Compressor Dis-
charge Pressure), and TET (Turbine Exhaust Tem-
perature). The output variable is NOx [9]. The per-
formance index is defined by (3). We consider 260
pairs of the original input-output data. 130 out of 260
pairs of input-output data are used as training data set;
the remaining part serves as a testing data set.

Using NOx emission process data, the regression
equation is obtained as follows.

y =-163.77341- 0.06709%, +0.00322x, 1)
+0.00235x; +0.26365x , +0.20893x .

This simple model comes with the value of PI=17.68
and E_PI=19.23. We will be using as a reference
point when discussing FNN models. Table 1 shows
computational cost and the related parameters used in
the hybrid identification algorithm.

In case of NOx emission process data, they have
many input variables and a quantity of lots data. To
look into the performance characters of this process,
overall dataset pairs of /O data are split into two
parts, namely training dataset (PI) and testing dataset
(E_PI). And the number of membership functions for
each input variable is set to two.

Table 2 includes the values of the performance in-
dex of the FRFNN model derived when using the
hybrid identification. The hybrid identification algo-
rithm extracts the optimal parameters of FNN such as
apexes of membership function, learning rate, and
momentum coefficient.

As illustrated in Table 2, the performance index for
the linear inference method-based FRENN is better
than the one produced by the simplified inference
method-based FRFNN. Also, according to the selec-
tion and adjustment of a weighting factor, we can de-
sign the desired model that contains the intention of
designer considering approximation and generaliza-
tion ability.

Table 1. Parameters of the optimization environment
and computational effort.

Genetic Algorithms " , I?ng?rqved Complex Al
| gorithm
Generation 100 o 1
Population 60 B 0.5
String 10 Y 2
Crossover rate | 0.6 € 1x107
Mutation Complex it-
probability 0.1 erations 500
FNN iterations | 1000 | LN itera- | 164
tions
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Fig. 4 shows the membership functions of each in-
put variable according to the partition of fuzzy input
spaces by a Min-Max method and the hybrid identifi-
cation algorithm. Just to mention that the Min-Max
method uses the minimum and maximum value of
experimental data encountered in the dataset.

Fig. 5 illustrates the optimization process by
visualizing the performance index in successive
cycles (generation and iterations) of the hybrid
identification algorithm. It also shows the preferred
network architectures.

Table 2. Performance index as a function of the
weighting factor.

Simplified inference | Linear inference
6 | method method
PI E_PI P1 E_PI
0.0 |0.7103 1.6443 0.0802 0.1901
0.25 | 0.7051 1.6463 0.0802 0.1901
0.5 |0.7001 1.6498 0.0802 0.1902
0.75 | 0.6912 1.6758 0.0629 0.2386
1.0 | 0.6804 1.7479 0.0617 0.2476
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Fig. 4. The final tuned values of membership func-
tions by hybrid identification algorithm.
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Fig. 5. The optimization process of each performance
indexes by the hybrid identification algorithm.

Fig. 6 shows the optimization process by visualiz-
ing learning rate and momentum coefficient in suc-
cessive cycles (generation and iterations) of the hy-
brid identification algorithm. The original output and
model output are shown in Fig. 7. The errors of rela-
tion-based fuzzy-neural networks are shown in Fig. 8.

4.2. Sewage treatment process

Sewage treatment generally uses the activated
sludge process that consisted of sand basin, primary
sedimentation basin, aeration tank and final sedimen-
tation basin (see Fig. 9). The suspended solid in-
cluded in sewage is sedimented by gravity in sand
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Fig. 7. Original output and model output of relation-
based fuzzy-neural networks.
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Fig. 8. Errors curves of relation-based fuzzy-neural
networks.

and primary sedimentation basins. Air is consecu-
tively absorbed in sewage in the aeration tank for
several hours. Microbe lump (that is called floc or
activated sludge) springing naturally, mainly remove
the organic matters in aeration tank. Activated sludge
biochemically oxygenates, proliferates and resolve
the organic matters into hydrogen and carbon dioxide
by metabolism. In the final sedimentation basin, floc
is sedimented, recycled and again used to remove the
organic matters and then purified water is transported
to tertiary sedimentation basin.

The activated sludge process is the process that in-
volves an aeration tank and final sedimentation. We
measure the Biological Oxygen Demand (BOD) and

Table 3. Comparison of performance with other mod-
eling methods.

MODEL Trt P, |EPL
Regression model 17.68 | 19.23
Ahn’s Neural Networks 17733
FNN 5.835
Model [10] iny 8.420
Fuzzy set- | Simpli-
based fied 6=0.4 6.269 | 8.778
FNN [11] Linear 6=0.2 3.725 | 5.291
Multi- [ 2P| oo 2806 | 5.164
FNN [12] Linear | 6=0.75 0.720 | 2.025
Simpli- .
Our model | fied 6=0.5 0.700 | 1.649
Linear 6=0.25 0.080 | 0.190

the concentration of Suspended Solid (SS) in influent
sewage at primary sedimentation basin, and effluent
BOD (EBOD) and SS (ESS) in effluent sewage at
final sedimentation basin. Because EBOD and ESS
are changed, dependent on BOD and SS, dissolved
oxygen set-point (DOSP) and recycle sludge ratio set-
point (RRSP) are set so that ESS and EBOD should
be kept up less than the prescribed small quantity.
EBOD and ESS depend on mixed liquid suspended
solid (MLSS), waste sludge ratio (WSR), RRSP and
DOSP. BOD has a correlation with SS.

In this experiment, we use a data set coming from
the sewage treatment system plant in Seoul, Korea.
The proposed model is carried out using 52 pair of
inputs-output data obtained from the activated sludge
process [7]. From four input variables (MLSS, WSR,
RRSP, and DOSP), we choose two input variables
(MLSS and WSR) that minimize the evaluation, and
extract more than two fuzzy partitions (fuzzy sets
LOW and HIGH) from each input-output pair of data.

Table 4 shows computational cost and the related
parameters used in the hybrid identification algorithm.

As illustrated in Table 5, the performance index for
the linear inference method-based FRFNN is better
than the one produced by the simplified inference
method-based FRENN.

The Fig. 10 shows membership functions of two
inputs variable (MLSS and WSR) according to the
partition of fuzzy input spaces using a Min-Max
method and the hybrid algorithm method.

The proposed model has 4 rules membership func-
tions as shown in Fig. 10 (a), (b).

ACTIVATED SLUDGE PROCESS

TERTIARY NATURAL
TREATMENT [ | CIRCUMSTANCES:

— : Wanter water flow —— : How of solid muterial

Fig. 9. Configuration of the sewage treatment system.
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Fig. 11 illustrates the optimization process by visu-
alizing the performance index in successive cycles
(generation and iterations) of the hybrid identification
algorithm. It also shows the preferred network archi-
tectures.

Fig. 12 shows the optimization process by visualiz-
ing learning rate and momentum coefficient in suc-
cessive cycles (generation and iterations) of the hy-
brid identification algorithm.

Table 4. Parameters of the optimization environment
and computational effort.

v Generation 100

o 1
Population 60 B 0.5
String 10 v 2
Crossover rate | 0.6 € 1x107°
Mutation Complex it-
probability 0.1 erations 500
FNN iterations | 500 | NN ltera- | 5q,

tions

Table 5. Performance index as a function of the
weighting factor.

Simplified infer- | Linear inference
0 ence method method
PI E_PI PI E_PI
0.0 | 13.695 | 11960 | 10.753 | 12.010
0.25]13.274 | 11997 | 10.708 | 12.018
0.5 | 12943 | 12.176 | 10.584 | 12.108
0.75] 12.795 | 12.425 ] 10.185 | 12.968
1.0 | 12.617 | 13.890 | 8.322 30.561
S;m“ ------- +Min-Max : Hy:;ri;l ---------------  Min-Max : Hy::
S
Xmin(1350) Xmax(2600) Xmin(0.19) Xmax(2.13)
1262.1%0 2290.001 0.551 0.889
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(a) Simplified inference method-based FRFNN
(6=0.5).
ot Ve s
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Xmin®) | Kmax(1) Xmin(0) il Xmax(1)
0.271 0.784 0.328 0.339
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(b) Linear inference method-based FRFNN (&=0.5).

Fig. 10. The final tuned values of membership func-
tions by hybrid identification algorithm.
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Table 6. Comparison of performance with other mod-
eling methods (Input variables — MLSS, WSR).
T

MODEL PL E PL

Fuzzy Simplified 13.72 16.20

model [7] | Linear 6.39 54.23

Hybrid 1 Sim- g 55 | 12403 | 12.200

fuzzy plified

model [8] | Linear | &=0.5 | 7.175 24.658

Fuzzy Sim-

set-based plified 6=0.6 | 13.40 8.28

FNN .

model [11] Linear | &=0.5 | 12.30 9.82
o Sim-

Our model | plified 6=0.5 112943 | 12.176

Linear | 6=0.5 | 10.584 | 12.108

The original output and model output are shown in
Fig. 13. The errors of relation-based fuzzy-neural
networks are shown in Fig. 14.

5. CONCLUSIONS

In this paper, the hybrid identification algorithm is
presented to automatically extract the optimal pa-
rameters of the Fuzzy Relation-based Fuzzy-Neural
Networks (FRENN) from complex nonlinear datasets.
The main contributions of this paper are as follows:
1) The hybrid Identification algorithm is used for
auto-tuning of the parameters of FRFNN model such
as apexes of the membership functions, learning rates,
and momentum coefficients. 2) The hybrid identifica-
tion algorithm combines GAs with the improved
complex method to guarantee both global optimiza-
tion and local convergence. 3) The experimental stud-
ies revealed that we can obtain better performance
through the hybrid identification algorithm in NOx
emission process data of heavy nonlinearity than uni-
formly distributed sewage treatment process. The ex-
perimental studies clearly revealed that we could ob-
tain better performance (both approximation and gen-
eralization capabilities) for two commonly used ex-
perimental datasets.
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