• Title/Summary/Keyword: nonlinear harmonic distortion

Search Result 76, Processing Time 0.023 seconds

Power Quality Improvement Using Hybrid Passive Filter Configuration for Wind Energy Systems

  • Kececioglu, O. Fatih;Acikgoz, Hakan;Yildiz, Ceyhun;Gani, Ahmet;Sekkeli, Mustafa
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.207-216
    • /
    • 2017
  • Wind energy conversion systems (WECS) which consist of wind turbines with permanent magnet synchronous generator (PMSG) and full-power converters have become widespread in the field of renewable power systems. Generally, conventional diode bridge rectifiers have used to obtain a constant DC bus voltage from output of PMSG based wind generator. In recent years, together advanced power electronics technology, Pulse Width Modulation (PWM) rectifiers have used in WECS. PWM rectifiers are used in many applications thanks to their characteristics such as high power factor and low harmonic distortion. In general, L, LC and LCL-type filter configurations are used in these rectifiers. These filter configurations are not exactly compensate current and voltage harmonics. This study proposes a hybrid passive filter configuration for PWM rectifiers instead of existing filters. The performance of hybrid passive filter was tested via MATLAB/Simulink environment under various operational conditions and was compared with LCL filter structure. In addition, neuro-fuzzy controller (NFC) was preferred to increase the performance of PWM rectifier in DC bus voltage control against disturbances because of its robust and nonlinear structure. The study demonstrates that the hybrid passive filter configuration proposed in this study successfully compensates current and voltage harmonics, and improves total harmonic distortion and true power factor.

Design and Stability Analysis of a Fuzzy Adaptive SMC System for Three-Phase UPS Inverter

  • Naheem, Khawar;Choi, Young-Sik;Mwasilu, Francis;Choi, Han Ho;Jung, Jin-Woo
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.704-711
    • /
    • 2014
  • This paper proposes a combined fuzzy adaptive sliding-mode voltage controller (FASVC) for a three-phase UPS inverter. The proposed FASVC encapsulates two control terms: a fuzzy adaptive compensation control term, which solves the problem of parameter uncertainties, and a sliding-mode feedback control term, which stabilizes the error dynamics of the system. To extract precise load current information, the proposed method uses a conventional load current observer instead of current sensors. In addition, the stability of the proposed control scheme is fully guaranteed by using the Lyapunov stability theory. It is shown that the proposed FASVC can attain excellent voltage regulation features such as a fast dynamic response, low total harmonic distortion (THD), and a small steady-state error under sudden load disturbances, nonlinear loads, and unbalanced loads in the existence of the parameter uncertainties. Finally, experimental results are obtained from a prototype 1 kVA three-phase UPS inverter system via a TMS320F28335 DSP. A comparison of these results with those obtained from a conventional sliding-mode controller (SMC) confirms the superior transient and steady-state performances of the proposed control technique.

A Design of a High Performance UPS with Capacitor Current Feedback for Nonlinear Loads (비선형 부하에서 커패시터 전류 궤환을 통한 고성능 UPS 설계)

  • Lee, Woo-Cheol;Lee, Taeck-Kie
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.5
    • /
    • pp.71-78
    • /
    • 2012
  • This paper presents a digital control solution to process capacitor current feedback of high performance single-phase UPS for non-linear loads. In all UPS the goal is to maintain the desired output voltage waveform and RMS value over all unknown load conditions and transient response. The proposed UPS uses instantaneous load voltage and filter capacitor current feedback, which is based on the double regulation loop such as the outer voltage control loop and inner current control loop. The proposed DSP-based digital-controlled PWM inverter system has fast dynamic response and low total harmonic distortion (THD) for nonlinear load. The control system was implemented on a 32bit Floating-point DSP controller TMS320C32 and tested on a 5[KVA] IGBT based inverter switching at 11[Khz]. The validity of the proposed scheme is investigated through simulation and experimental results.

A Study on the Harmonics Measurement, Assessment and Resonant Filter Application of the Electrolyzer Loads (전해조 부하의 고조파 측정, 평가 및 동조필터 적용에 관한 연구)

  • Kim, Kyung-Chul;Jin, Seong-Eun;Lee, Joo-Hong;Seo, Beom-Gwan;Jeon, Young-Soo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.4
    • /
    • pp.12-20
    • /
    • 2006
  • Heavy chemical industries have nonlinear loads including electrolyzers. The electrolysis consists of AC-BC converters which generate harmonic currents and create distortions on the sinusoidal voltage of the power system. This paper provides in depth an analysis on harmonics field measurement for the electrolyzer loads, adding a single-tuned filter at the customer bus for reducing harmonic distortion and harmonic assessment by the international harmonic standards IEC 61000-3-6 and IEEE Std. 519. The EDSA program was used as a simulation tool for the case study.

Diagnostic and Active Filtering of Harmonics Generated by Compact Fluorescent Lamps

  • Moulahoum, Samir;Houassine, Hamza;Kabache, Nadir
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.2
    • /
    • pp.162-168
    • /
    • 2014
  • Use of nonlinear loads, such as power converters, fluorescent lamps and adjustable speed motor drives, is expected to grow rapidly. All of these loads inject harmonic currents. This paper presents the active filtering of the harmonic distortion generated by the compact fluorescent lamps (CFL). The Instantaneous active and reactive power theory (the p-q Theory) is used to design the control of parallel active filter. The control scheme has been verified using Matlab/Simulink with SimPower Systems through a set of simulation tests under different load conditions. Also, the tuning of the active power filter is performed to improve the quality of the electrical power supply.

Finite Element Method using Complex Harmonics for analyzing saturation characteristics (포화 특성 해석을 위한 복소 고조파 유한 요소해석법)

  • Chung, Yong-Seek;Park, Gwan-Soo;Hahn, Song-Yop
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.11-14
    • /
    • 1990
  • The Complex Harmonic Balance Finite Element Method CHBFEM ) is dicussed for the time - periodic magnetic field with saturation characteristics. And Jw - method which is used for analyzing liner system with sinusoidal voltage input can be generalized in nonlinear time-periodic magnetio field system. The CHBFEM enables us to calculate the each harmonic magnetic flux ditribution and the distortion of currents resulting from material at an AC voltage source and to save calculating time, the number of calculation and computer memory.

  • PDF

A Study on the Harmonics Effect of Ratio Differential Relay for Transformer Protection (변압기 보호용 비율차동계전기의 고조파 영향에 관한 연구)

  • Kim, Kyung-Chul;Hwang, Young-Rok;Kho, Hun;Jung, Dong-Won;Chung, Hae-Sung;Lee, Dong-Wook;Jeong, Chae-Ho;Lee, Jae-Yoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.6
    • /
    • pp.99-105
    • /
    • 2014
  • Power transformers are applied throughout the power system to connect systems of different voltage to one another. Since a ratio differential relay offers high sensitivity in detection of internal faults in power transformers, it is widely used in the main protection system. The use of nonlinear devices such as rectifiers and other devices utilizing solid state switching have been increased in industry during recent years. For nonlinear loads, the load current is not proportional to the instantaneous voltage. This situation creates harmonic distortion on the system. The harmonic could differential relay misoperation if not recognized. This paper aims at analyzing and probing into the influences of harmonics on a ratio differential relay for power transformer protection.

A Study on the two phase sinusoidal voltage Controlled Oscillator with Low Distortion (저왜율을 갖는 2상정현파 전압제어 발진기에 관한 연구)

  • 이성백;이윤종
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.12 no.5
    • /
    • pp.527-534
    • /
    • 1987
  • Two phase voltage controlled oscillation was realized by using the Electronic analog simulation of nonlinear simultaneous 2st order equation in terms of vibration and it's usefullness was sustined. Sinde it is complex and expensive to implement the circuits actually which composits and multiplicate the two phase signal squared respectively, this paper is obtained the simplificotion and switching circuit. The circuit introducced in this paper had propotionality of frequency to control input voltage, rapid response time, and little phase error, also this circuit operated with very low THD(Total Harmonic Distortion) and constant amplitude at higher than 10 :1 of frequency ratio.

  • PDF

Direct Harmonic Voltage Control Strategy of Shunt Active Power Filters Suitable for Microgrid Applications

  • Munir, Hafiz Mudassir;Zou, Jianxiao;Xie, Chuan;Li, Kay;Younas, Talha;Guerrero, Josep M.
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.265-277
    • /
    • 2019
  • The application of shunt active power filters (S-APFs) is considered to be the most popular approach for harmonic compensation due to its high simplicity, ease of installation and efficient control. Its functionality mainly depends upon the rapidness and precision of its internally built control algorithms. A S-APF is generally operated in the current controlled mode (CCM) with the detection of harmonic load current. Its operation may not be appropriate for the distributed power generation system (DPGS) due to the wide dispersion of nonlinear loads. Despite the fact that the voltage detection based resistive-APF (R-APF) appears to be more appropriate for use in the DPGS, the R-APF experiences poor performance in terms of mitigating harmonics and parameter tuning. Therefore, this paper introduces a direct harmonic voltage detection based control approach for the S-APF that does not need a remote harmonic load current since it only requires a local point of common coupling (PCC) voltage for the detection of harmonics. The complete design procedure of the proposed control approach is presented. In addition, experimental results are given in detail to validate the performance and superiority of the proposed method over the conventional R-APF control. Thus, the outcomes of this study approve the predominance of the discussed strategy.

Harmonic Reduction of Electric Propulsion Ship using New Rectification Scheme (새로운 정류방식을 이용한 전기추진선박의 고조파 저감)

  • Kim, Jong-Su;Choi, Jae-Hyuk;Yoon, Kyoung-Kuk;Seo, Dong-Hoan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.10
    • /
    • pp.2230-2236
    • /
    • 2012
  • Currently, the AC-to-DC power conversion system using diode rectifiers is mainly used in large vessels. Also, to reduce the total harmonic distortion(THD) of current and voltage, this system requires an additional phase-shifting transformer which can be powered multi-pulses. In this case, due to the installation of the transformer, the spatial or economic loss occurs. This paper presents a novel active rectification scheme using silicon controlled rectifier(SCR) or insulated gate bipolar transistor(IGBT) devices on behalf of the diode rectifiers which are currently operating in large vessels such as LNG Carrier(LNGC). The proposed system can use the low voltage source and reduce current and voltage harmonics generated by nonlinear loads connected to the power distribution bus and save economic costs by removing the phase-shifting transformers which are used in conventional system. Computer simulations are performed under the electric propulsion system which is operating in current large vessel. The results are shown in support of the improvement of THD included in the current and voltage wave forms of propulsion motor.