• 제목/요약/키워드: nonlinear global analysis

검색결과 270건 처리시간 0.032초

Global and Local Views of the Hilbert Space Associated to Gaussian Kernel

  • Huh, Myung-Hoe
    • Communications for Statistical Applications and Methods
    • /
    • 제21권4호
    • /
    • pp.317-325
    • /
    • 2014
  • Consider a nonlinear transform ${\Phi}(x)$ of x in $\mathbb{R}^p$ to Hilbert space H and assume that the dot product between ${\Phi}(x)$ and ${\Phi}(x^{\prime})$ in H is given by < ${\Phi}(x)$, ${\Phi}(x^{\prime})$ >= K(x, x'). The aim of this paper is to propose a mathematical technique to take screen shots of the multivariate dataset mapped to Hilbert space H, particularly suited to Gaussian kernel $K({\cdot},{\cdot})$, which is defined by $K(x,x^{\prime})={\exp}(-{\sigma}{\parallel}x-x^{\prime}{\parallel}^2)$, ${\sigma}$ > 0. Several numerical examples are given.

Recurrence plot entropy for machine defect severity assessment

  • Yan, Ruqiang;Qian, Yuning;Huang, Zhoudi;Gao, Robert X.
    • Smart Structures and Systems
    • /
    • 제11권3호
    • /
    • pp.299-314
    • /
    • 2013
  • This paper presents a nonlinear time series analysis technique for evaluating machine defect severity, based on the Recurrence Plot (RP) entropy. The RP entropy is calculated from the probability distribution of the diagonal line length in the recurrence plot, which graphically depicts a system's dynamics and provides a global picture of the autocorrelation in a time series over all available time-scales. Results of experimental studies conducted on a spindle-bearing test bed have demonstrated that, as the working condition of the bearing deteriorates due to the initiation and/or progression of structural damages, the frequency information contained in the vibration signal becomes increasingly complex, leading to the increase of the RP entropy. As a result, RP entropy can serve as an effective indicator for defect severity assessment of rolling bearings.

PDC Intelligent control-based theory for structure system dynamics

  • Chen, Tim;Lohnash, Megan;Owens, Emmanuel;Chen, C.Y.J.
    • Smart Structures and Systems
    • /
    • 제25권4호
    • /
    • pp.401-408
    • /
    • 2020
  • This paper deals with the problem of global stabilization for a class of nonlinear control systems. An effective approach is proposed for controlling the system interaction of structures through a combination of parallel distributed compensation (PDC) intelligent controllers and fuzzy observers. An efficient approximate inference algorithm using expectation propagation and a Bayesian additive model is developed which allows us to predict the total number of control systems, thereby contributing to a more adaptive trajectory for the closed-loop system and that of its corresponding model. The closed-loop fuzzy system can be made as close as desired, so that the behavior of the closed-loop system can be rigorously predicted by establishing that of the closed-loop fuzzy system.

Incorporating nonstructural finish effects and construction quality in a performance-based framework for wood shearwall design

  • Kim, Jun Hee;Rosowsky, David V.
    • Structural Engineering and Mechanics
    • /
    • 제21권1호
    • /
    • pp.83-100
    • /
    • 2005
  • This paper presents results from a study to extend a performance-based shearwall selection procedure to take into account the contributions of nonstructural finish materials (such as stucco and gypsum wallboard), construction quality issues, and their effects on the displacement performance of engineered wood shearwalls subject to seismic loading. Shearwall performance is evaluated in terms of peak displacements under seismic loading (characterized by a suite of ordinary ground motion records) considering different combinations of performance levels (drift limits) and seismic hazard. Shearwalls are analyzed using nonlinear dynamic time-history analysis with global assembly hysteretic parameters determined by fitting to actual shearwall test data. Peak displacement distributions, determined from sets of analyses using each of the ground motion records taken to characterize the seismic hazard, are postprocessed into performance curves, design charts, and fragility curves which can be used for risk-based design and assessment applications.

도서관의 이용자 만족도 요인 구조 분석 (The Factor Structure of Customer Satisfaction in Libraries)

  • 이정호
    • 한국비블리아학회지
    • /
    • 제23권1호
    • /
    • pp.215-234
    • /
    • 2012
  • 본 연구는 도서관 서비스 품질이 이용자 만족도에 미치는 영향력의 비대칭성 여부를 실증적으로 검증해보고 고객만족도 증진을 위한 개선전략을 도출하는 것을 목적으로 한다. 비대칭성 검증은 Kano의 서비스 3요인 이론을 기반으로 수행하였고, 자료의 분석을 위해 다중회귀분석이 실시되었다. 분석결과 총 22개의 품질 속성 중에서 기본요인(8개), 성과요인(12개), 감동요인(2개)이 도출되었다.

Structural behavior of conventional and buckling restrained braced frames subjected to near-field ground motions

  • Guneyisi, Esra Mete;Ameen, Nali
    • Earthquakes and Structures
    • /
    • 제7권4호
    • /
    • pp.553-570
    • /
    • 2014
  • In this study, nonlinear dynamic analyses were performed in order to evaluate and compare the structural response of different type of moment resisting frame buildings equipped with conventional braces (CBs) and buckling restrained braces (BRBs) subjected to near-field ground motions. For this, the case study frames, namely, ordinary moment-resisting frame (OMRF) and special moment-resisting frame (SMRF) having two equal bays of 6 m and a total height of 20 m were utilized. Then, CBs and BRBs were inserted in the bays of the existing frames. As a brace pattern, diagonal type with different configurations were used for the braced frame structures. For the earthquake excitation, artificial pulses equivalent to Northridge and Kobe earthquake records were taken into account. The results in terms of the inter-story drift index, global damage index, base shear, top shear, damage index, and plastification were discussed. The analysis of the results indicated a considerable improvement in the structural performance of the existing frames with the inclusion of conventional and especially buckling-restrained braces.

로보트 매니퓰레이터에 대한 비선형 제어 (Nonlinear control for robot manipulator)

  • 이종용;이승원;이상효
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.263-268
    • /
    • 1990
  • This paper deals with the manipulator with actuator described by equation D over bar(q) $q^{...}$ = u-p over bar (q, $q^{.}$, $q^{..}$) with a control input u. We imploy a simple method of control design which bas two stages. First, a global linearization is performed to yield a decoupled controllable linear system. Then a controller is designed for this linear system. We provide a rigorous analysis Of the effect of uncertain dynamics, which we study using robustness results In time domain based on a Lyapunav equation and the total stability theorem. I)sing this approach we simulate the performance of controller about a robotic manipulator with actuator.tor.r.

  • PDF

In-plane 굽힘 조건에서 감육엘보우 거동에 미치는 내압의 영향 (Effect of Internal Pressure on the Behavior of Wall Thinned Elbow under In-Plane Bending)

  • 김진원;김태순;박치용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.268-273
    • /
    • 2004
  • This study is conducted to clarify the effect of internal pressure on the deformation and collapse behaviors of wall thinned elbow under in-plane bending moment. Thus the nonlinear three-dmensional finite element analyses were performed to obtain the moment-rotation curve of elbow contatining various wall thinning defects located at intrados and extrados under in-plane bending (closing and opening modes) with internal pressure of $0{\sim}15MPa.$ From the results of analysis, the effect of internal of collapse moment of elbow on the global deformation behavior of wall thinned elbow was discussed, and the dependence of collapse moment of elbow on the magnitude of internal pressure was investigated under different loading mode, defect location, and defect shape.

  • PDF

Research on scheduling and optimization under uncertain conditions in panel block production line in shipbuilding

  • Wang, Chong;Mao, Puxiu;Mao, Yunsheng;Shin, Jong Gye
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제8권4호
    • /
    • pp.398-408
    • /
    • 2016
  • Based on non-completely hybrid flow line scheduling of panel block in shipbuilding, several uncertain factors influencing the problem were analyzed in a real environment, and a nonlinear integer programming model was built for each sub-scheduling problem. To narrow the difference between theory and application, rolling horizon and rescheduling methods are proposed. Moreover, with respect to the uncertainty of processing time, arriving time and due time, we take the minimizing of the early and delayed delivery costs as the objective, and establish an evaluation with a global penalty function. Finally, numerical experiments and a simulation analysis were undertaken to demonstrate the effectiveness of the model and algorithm.

Performance of R/C Bridge Piers under Seismic Loads

  • Kang, Hong-Duk;Kang, Young-Jong;Yoon, Young-Soo
    • KCI Concrete Journal
    • /
    • 제12권1호
    • /
    • pp.35-46
    • /
    • 2000
  • A research program was initiated at the University of Colorado at Boulder to develop computational models that can be used for seismic risk assessments. To assess the overall performance of bridge structures including the nonlinear effects of bridge piers, the research focused on two levels of capabilities, i.e. global and local pier levels. A 3-D concrete model was used to evaluate the behavior of individual piers under combined axial, bending, and shear loadings using 3-D finite element analysis. Whereby the response curve reached the peak strength of the R/C column under the constant axial and monotonically increasing lateral loads. Experimental results on reinforced concrete bridge piers, which were obtained at the University of California at San Diego were used to validate the seismic performance of bridge piers at the two levels, globa1 and local.

  • PDF