Performance of R/C Bridge Piers under Seismic Loads
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ABSTRACT

A research program was initiated at the University of Colorado at Boulder to develop
computational models that can be used for seismic risk assessments. To assess the overall
performance of bridge structures including the nonlinear effects of bridge piers, the research
focused on two levels of capabilities, i.e. global and local pier levels. A 3-D concrete model
was used to evaluate the behavior of individual piers under combined axial, bending, and
shear loadings using 3-D finite element analysis. Whereby the response curve reached the
peak strength of the R/C column under the constant axial and monotonically increasing
lateral loads. Experimental results on reinforced concrete bridge piers, which were obtained at
the University of California at San Diego were used to validate the seismic performance of
bridge piers at the two levels, global and local.
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1. Introduction

The vulnerability of highway bridges to
earthquake ground motions was very apparent
in a number of major earthquakes, such as
the 1971 San Fernando, the 1989 Loma
Prieta, and the 1994 North ridge earthquakes
in California, and the recent 1995 Hyogoken-
Nanbu earthquake® in Japan. Bridge struc-
tures which were severely damaged in the
Hyogoken-Nanbu earthquake were designed
with older code provisions, which did not
have specific detailing requirements to ensure
sufficient ductility of the piers. While most of
the catastrophic failures of reinforced concrete
bridge piers in that earthquake can be
attributed to inadequate confinement or
transverse reinforcement, the damage induced
in numerous oversized piers is still difficult to
understand without detailed engineering anal-
ysis. This includes severe bending and
crushing failures, as well as brittle diagonal
shear failures which took place in many over-
sized piers.

A research project was carried out at the
University of Colorado at Boulder to explain
some of the failure phenomena of bridge piers
in the Hygoken-Nanbu earthquake. This
paper demonstrates the overall response be-
havior of the flexibility-based fiber model for
the column analysis, and a three-dimensional
constitutive model for c_oncrete4, which is
designed to capture diffused and localized
failure modes under different triaxial load
scenarios. To illustrate the performance of
these different models with engineering prob-
lem of general interest, the nonlinear be-
havior of a reinforced concrete column tested
at the University of California at San Diego’
was studied from different approaches.
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2. Column Description

Two columns tested at the University of
California, San Diego®, were selected for the
study which are labeled R-1 and R-3. The
columns have the same geometry depicted
in Fig. 1 with the material properties
summarized in Table 1. Rotations at the two
ends of the columns were restrained. A
constant axial force of 25402 N (approx-
imately equal to 4.5% Po, the axial strength
of the R/C column) was applied, followed by
increasing cycles of imposed lateral displace-
ments. The experimental responses are
represented by the continuous lines in Fig. 2
and 3. Column R-1 failed primarily in a
bending pattern, with horizontal bending
cracks appearing first and diagonal shear

crack appearing only in the last cycles.
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Fig. 1 (a) Elevation of R/C column.
(b) Cross section of R/C column.
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Column R-3 showed a somewhat different
behavior where shear cracks formed -earlier
than in specimen R-1 and strength degra-
dation due to shear-failure dominated the last

cycles.
2.1 Fiber Model Study of R/C Columns

A numerical study was conducted to assess
the performance of nonlinear frame elements
proposed by Spacone et al.” in describing the
response of bridge piers to large lateral
sways. The formulation was based on the
force method and assumed constant axial
force and linear bending moment along the
element. One beam element with five inte-
gration points was used for columns R-1 and
R-3. Each cross section was discretized into
fifteen concrete layers across its depth. No
distinction was made in this study between
confined and unconfined concrete fibers.

Experimental and numerical predictions are
illustrated in Fig. 2 and 3 together. The
numerical results for column R-1 showed good
agreements with the experimental responses,
showing the beam capability to reflect the
bending behavior of the structure. The
difference in the initial stiffness is probably
due to the bond-slip observed in the longi-
tudinal reinforcement at the column ends. It
should be noted that the drastic loss of the
strength of the column in the final cycles is
not captured by the beam element, because

the model by Spacone et al.” does not account

Table 1 Material properties of R/C columns

Column Concrete Axial Steel | Hoop Steel

R-1 | f. =38MPa| f,=317MPa| f,=361MPa

R-2 | f. =34MPa| f,=470MPa| f,=324MPa
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Fig. 3 Cyclic response of column R3,

for shear deformations or shear failure. This
discrepancy becomes more evident for column
R-3. Shear cracks developed at the early
stages of the experiment and strength deg-
radation due to shear failure were evident
from displacements smaller than 2.54cm.
Since the element neglect$ the shear behavior
of th® beam, it cannot describe the shear
deformation even though the element does
capture the bending and axial behavior of
reinforced concrete columns. Fig. 2 and 3 also
show the flexural and shear strengths
computed according to the ACI code
provisionsl. While the flexural strength is
close to the experimental and numerical
results, the shear strength predicted by the
ACI code is very conservative and under-

estimates the observed column strength.
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3. Triaxial Concrete Model

The three-dimensional concrete model is
based on an elasto-plastic constitutive formu-
lation in which the initial yield surface and
the failure envelope bound the hardening
regime of concrete in tension and compres-
sion, respectively, as shown in Fig. 6. After
the stress path reaches the failure envelope,
the concrete model exhibits strain softening
depicted in Fig. 7 under progressive straining
in triaxial tension, and perfect plasticity
under highly confined compression. Thereby,
the concrete model captures both hardening
and softening in compression and tension as
indicated in the uniaxial stress—strain curves
in Fig. 4. A non-associated flow rule plays a
significant role in characterizing plastic
dilatation in order to assure realistic
predictions of inelastic volume changes at
different  confinement levels. The main
features of the concrete model and its
distinction from other existing models are

briefly summarized below.

' —

Fig. 4 Uniaxial stress—strain behavior.

3.1 Elasto-Plastic Formulation

Based on standard flow theory of elasto-

plasticity, the strain rate can be decomposed
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additively into an elastic component and

aplastic components, €E=€+&, in the case of
infinitesimal
deformations. The elastic strain rate is

related to the stress rate by Hooke's law:
6=E:e.=E:(e-¢)) )

where E=A3®3+2GI, denotes  the

isotropic elasticity tensor. Assuming that

there is no elastic damage, the elastic

properties remain constant during the entire

plastic deformation process. The elastic range

is delimited by the plastic vield condition:
F(69 q’%q’) = 0 (2)

where the size and shape of which depend
on two internal variables ¢# and ¢s for
describing the increase of strength due to
hardening and the degradation of strength
due to tensile softening, respectively. In the
case of plastic loading, the direction of the
plastic strain rate 1is governed by the

non-associated flow rule:

i —.a_Q_.
& =A3g ~hm 3)

where @ denotes the plastic potential and
A the plastic multiplier. The latter is
determined with the help of the plastic
consistency condition, Fr+1(AA)=0, which
assures that the constitutive behavior under
persistent plastic deformations is consistent

within the finite time interval

At=tn+l—tn.
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3.2 Yield Function

The curvilinear loading surface F(©,grqs)=0
maintains C'-continuity except for the apex in
equitriaxial tension. The deviatoric sections of
the triaxial failure envelope in Fig. 5 have a
triangular shape in tension and low confined
compression which gradually transforms into a
circular shape under increasing hydrostatic

pressure (see sections 1-2-3 in Fig. 5).

of’

Fig. 5 Deviatoric sections of triaxial failure envelope.

3.2.1 Strain Hardening
In the hardening regime, the plastic yield

condition

o B
F(&,p,e,k)=pr(e,e)—pl{[%] +[(%) 4”:0

(4)

is a function of the Haigh-Westergaard

stress coordinates, resulting in the three

E=1 /43 p=427,

stress invariants,

433 U
9=%cos 1(—2-——‘/;_23]

Hardening is controlled by the normalized

hardening variable k =k(gsE) which varies

between 0<k <1 where 9% corresponds to the
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equivalent plstic strain and € introduces the
effect of hydrostatic stress on the nonlinear
hardening response. The exponent @ accounts
for the pressure-sensitivity of the triaxial
concrete strength(i.e., @=0.5 ghows a failure
surface in the form of a triple symmetric
paraboloid)

Strain  hardening is governed by the

exponent, B(K) in the loading function
Ean. (4) where

1-k2

=025
B=0251— (5)

k,= initial value of k&

is a function of the hardening measure
k=k(gnE) where k is defined as

2
k =E(l—k0)(,/2hDeP ~¢,)+ko
2
weelg] g
1 1l (6)

According to Eqn.(5), the exponent P(K) in
the hardening term of the yield function
varies from 0.25 to 0 when % <k<0. When

B=0, the compression cap fully opens up and
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Fig. 6 Strain hardening meridians.
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the compressive meridian (corresponding to

6=60°) of the loading surface reaches the
failure envelope, as shown in TFig. 6.
Therefore, the compressive meridian of the
failure surface passes through the point of

uniaxial compression.

3.2.2 Strain Softening

When the stress path reaches the failure
surface, B—0 as indicated in Eqn. (5) and
the hardening term  becomes inactive.
Progressive straining in triaxial tension
mobilizes softening of the yield condition in
Egn. (7) which is augmented by the

normalized decohesion variablel 2 c(g:,€) >0 :

§‘§0 o
E &,

gO o gc _g 2
—(1- e =t - =0
( C)(go _él) ( &Jc ) } (7)

F(E&.p,0,c)=pr(8,e)—p,{(

The above equation is valid for &2&..
Note that & =-T§, locates the transition
point of brittle/ductile fracture below which

softening takes place. For &S&C’ the yield
surface coincides with the failure envelope
and the behavior of the material is almost

perfectly plastic in that region. The change of
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Fig. 7 Strain softening meridians.
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the loading surface due to strain softening is

illustrated in Fig. 7 where the strain

c=c(q,.8)

tensile degradation and is a function of the

softening  parameter controls

equivalent tensile fracture strain

10
= exp[8( )] ®

where #; =¢€,1,
g, = Mlm'”zdt
sp = A,(§-B,f)) +10

A,, B,=constants

which is a function of the equivalent
tensile fracture strain. The internal softening
variable is activated by the equivalent tensile
fracture strain, q., from the time at which
the stress path reaches the failure envelope.
In the equation, m, extracts only tensile
components from the gradient of the plastic
potential m , [, denotes the characteristic

length for fracture energy-based strain

softening. and N3] accounts for the
influence of the confinement pressure on the

slope of the softening branch. The value of

the strain softening variable c(g,,%) varies

according to the state of decohesion from zero

to one(15¢(4,,8)<0)

3.3 Plastic potential

A non-associated flow rule is adopted for
realistic predictions of concrete dilatation at
different levels of confinement. The plastic
potential has the same structure as Eqns. (4)
and (7) but with the exponent @ replaced by

o . Experimental data on concrete materials

indicate that O<a <o .
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4. Performance of Triaxial Concrete
Model in Shear

The constitutive model presented in the
previous section has been calibrated with the
data of conventional triaxial compression
tests® with confinement pressures of p=0,
0.69, 3.45 MPa, respectively. The parameter

values are summarized in Table 2.

Table 2 Material parameters.

fJMPa| §gMPa| ¢ S| A, | By
34.0 6.2 0.77 Q0.7 |-.000283| -0.00572

Ch T As | B é o

.000424 8.2 .000222|.65818| 10** 0.23

The performance of the concrete model
under pure and simple shear were studied
recently with a particular focus on the
difference of shear failure under different
levels of confinement8. Fig. 8 shows the
shear response which leads to tensile cracking

at 8=45° according to the maximum stress
hypothesis of Rankine which characterizes
failure in “pure shear’.

The failure mode is illustrated in Fig.
12(a). Pure shear is a stress-controlled

experiment in which only the shear stress

increases ’fxz >0, while all other stress
components remain zero. Thus, the failure
mode is very brittle due to the formation of a

diagonal tensile crack according to

f, =3.8MPa. In contrast, simple shear is a

fully strain—controlled experiment in which

only the shear strain Y >0 increases, while

all other strain components remain zero.
Thus, the simple shear response in Fig. 9

exhibits strength and ductility values which

KCI Concrete Journal (Vol.12 No.1 2000.1)

Stress—Strain Responses in Pure Shear
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Fig. 8 Pure shear response
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Fig. 9 Simple shear response

exceed tenfold than those under pure shear in
Fig. 8 due to the confinement effect induced
by the kinematic constraint of zero normal
strain. The corresponding failure mode shown
in Fig. 12(b) demonstrates the significant
difference between pure shear and simple
shear. The latter is  governed by

compression-slip at the point of localized
failure denoted by the symbol @ which takes
place in the ascending branch of the response
curve of Fig. 9. The large discrepancy of
strength and ductility in pure and simple
shear reflect the important difference in shear
behavior of reinforced concrete columns with

and without confinement due to high quan-
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tities of longitudinal and transverse rein-
forcing steels.

The shear behavior in a R/C column lies
between the two extremes of no confinement
in pure shear and full confinement in simple
shear. The subsequent study is an attempt to
provide additional insight into the behavior of
the shear critical section at mid-height of the
R/C column. Thereby a plain concrete brick
element is subjected to mixed compression-
shear boundary conditions which emulate
constant axial load and monotonically
increasing lateral shear force without
constraining out-of-plane deformations. The
response of this mixed compression-shear test
is shown in Fig. 10. This indicates an
increase of shear strength of 100 % beyond
the shear strength in pure shear. The plot
also shows that the localization, indicated by
the symbol @ in Fig. 10 occurs slightly
earlier than the loss of stability marked by
the symbol ®. The localized failure mode of
this experiment is also depicted in Fig. 12(c)
which shows a little increase of the dominant
slip angle from 74° to 78 between the
normal vector and the governing slip direction
when compared to the fully confined case of

simple shear.

0.000 0.002 0.004 0.006 0.008 0.010
Yz

Fig. 10 Shear-compression response of plain concrete.
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Fig. 11 Shear-compression response of reinforced concrete

In a final attempt to emulate the behavior
of the R/C column R-3 which has been
discussed earlier, the shear-compression
experiment on plain concrete is expanded to
include longitudinal and transverse reinforce-
ment at the boundaries of the brick element.
The response of the reinforced concrete
element is shown in Fig. 11 that illustrates
the effect of axial and transverse reinforcing
steels over the response of plain concrete.
Both tests impose a monotonically increasing

shear strain y, >0, while €, #0,€, #0 and

€, #0 It is important to note that the shear
strain reading at concrete failure of the
reinforced specimen indicates an increased
ductility of 80 % and by 650 % when
compared to plain concrete (Fig. 10) and to
the pure shear response (Fig. 8), respectively.
The additional confinement of the axial and
transverse reinforcements also increases the
shear strength of the reinforced concrete

T:zm =14.1MPa (le by

specimen up to
another 100 %) beyond the shear strength of
the plain concrete specimen. This corresponds
to the vyield capacity of the transverse
stirrups. Up to this stage, the shear response
exhibits the typical tension stiffening effect of

reinforced concrete with a hump in the

KCI Concrete Journal (Vol.12 No.1 2000.1)



ascending branch when the tensile concrete
strength is being exhausted. In other terms,
longitudinal and transverse steels regularize
the shear behavior and drive the shear

response of the reinforced concrete specimen

-

T,
“ Locallzed Fallure 648"

(@) Pure shear

Localized Failure 8 <16, 74’

(b) Simple shear

¢l’vﬂc(:l"Sl

Figid Body

(c) Plain concrete

|

ﬁ:oonst

(d) R/C panel in shear-compression

Fg. 12 Different shear modes of failure of friaxial concrete
model
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to the flat plateau as depicted in Fig. 11.
Pre-peak response in Fig. 11 indicates
localized failure, however it is being
regularized by the axial and transverse
reinforcement bars along the slip planes as

illustrated in Fig. 12(d).

5. 3-D Analysis of Bridge Columns

In the final study, the reinforced concrete
bridge column tested by Xiao et al.’ was
analyzed with the new concrete model. The
cross section of the column, which is
designated as R-1 in the report by Xiao et
al., was idealized for numerical studies as
shown in Fig. 1. The rectangular column with
L=2440 mm was subjected to lateral
displacement cycles with the top and bottom
being fixed from rotation, while the axial load
of F,=25402 N was fixed constant during
the cyclic load program. The longitudinal
reinforcement ratio was 0, =2.5% while the
transverse stirrups were #2 hoops at h=127
mm. spacing. Both the Ilongitudinal and
transverse reinforcement was made of Grade
40 steel. The actual yield strength of the

longitudinal steel was, however, f, =317 MPa,
while that of the transverse steel was

f, =359 MPa. The concrete had a compressive

strength of fe=38MPa 5 og days. The
experimental failure mode of this column was
characterized as “flexural shear” in the
original experimental report as it reached the
theoretical flexural strength in the test, but
the final rupture in the post-peak regime was
governed by shear as shown in Fig. 2.

Results of the three-dimensional analysis
are described below. In the finite element

mesh depicted in Fig. 13, the reinforcing steel
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Fig. 13 Finite element discretization of cross-section

is modeled with bar elements that are fully
bonded to the hexahedral concrete elements.
Thereby, the area of the longitudinal rebars
was weighted differently with more steel
being concentrated at the outside fibers of the
cross section than in the interior. Since other
material data were not available besides the
uniaxial compressive strength of concrete, the
parameter values of the concrete model shown

in Table 2 were used in this analysis except
f, =38 MPa and £ =69 MPa

for Je

In the three-dimensional simulation, the
behavior of the reinforced concrete column is
analyzed under a monotonically increasing
lateral displacement and constant axial load.
The numerical result is compared to the
experimental data in Fig. 14 and the
deformed shape of the column is depicted in

Fig. 17. The experimental data shown in the

Flexural Response of RC Column
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50.0 / —— Numerical Result
’ —— - TastData
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00 02 04 0.6 08
Lateral Displacement A, {inch)

Fig. 14. R/C column loaded in compression-shear
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Fig. represent the peak load reached in the
first cycle of each ductility level. While the
finite element model captures the strength of
the reinforced concrete column, the numerical
result exhibits somewhat higher stiffness than
the experimental. The discrepancy between
the experimental and numerical results could
be caused by several factors such as (i) the
difference between the monotonically
increasing lateral displacement analysis and
the cyclic displacement reversals of the
experimental load program and (i) the bond
slip of the longitudinal steel anchors that was
ignored in the analysis. The fiber strains in
the longitudinal reinforcement bar at the top
and bottom of cross-sections of the column as

depicted in Fig. 15(a) and (b) do compare

0.008 - o—o P = 30 kips (Numer.)
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0.007 | oo P = 30 kips (Exper.)
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Fig. 15 Strain distributions of longitudinal rebars atong

cross sections of (a) top, and (b) bottom of the
column,
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well with the test data indicating a fairly
planar distribution of longitudinal fiber
strains except for the increase at the
compressive toe of the cross-section when the
lateral load reaches P=23154 N. The shear
deformation predictions also compare quite
well with the experimental measurements in
three segments along the height of the
column as shown in Fig. 16. However, the
numerical results indicate that the shear
deformations at the base are underestimated
near the maximum lateral load P=26976 N
by the analysis which indicates again towards
additional bond slip effects at the anchorage
of the longitudinal reinforcement that was not
included in the analysis.

In summary, the finite element model
captures the flexural response of the column
rather well since it accounts fully for the
triaxial confinement effect of the transverse
reinforcement. However, the analysis has not
gone beyond the peak point due to the nature
of highly induced nonlinearity in the complex
column. This remains to be studied in the

near future.
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Fig. 17 Deformed shape of column under constant
compression and increasing lateral loadings

6. Conclusions

The results of a beam-column analysis
showed the capabilities and limitations of the
1-D fiber formulation when the R/C column is
failing in shear.

At the other extreme of one and three-
dimensional analyses, a triaxial concrete
model was introduced for the analysis of
reinforced concrete bridge piers. The model
accounts for the effect of lateral confinement
on the behavior of concrete in terms of
stiffness, strength and ductility. The triaxial
concrete model was subjected to a number of
shear experiments which illustrates the
exceptional influence of confinement.

Subsequently, the triaxial concrete model
was applied to the analysis of a reinforced
concrete column which had been tested at the
University of California at San Diego. The
numerical results showed a good correlation

with experimental ones. However, further
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studies are needed to analyze more precisely
selected bridge piers that were severely
damaged in the Hyogoken-Nanbu earthquake.
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