• Title/Summary/Keyword: nonlinear finite analysis program

Search Result 388, Processing Time 0.029 seconds

Simplified Seismic Response Analysis of a RC Bridge (철근콘크리트 교량의 단순화된 내진응답해석)

  • 이도형;전종수;박대효
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.949-954
    • /
    • 2003
  • In this paper, simplified modeling approach describing the hysteretic behavior of reinforced concrete columns is discussed. The inelastic response of a reinforced concrete column or pier subjected to cyclic deformation reversals or earthquake ground motion is evaluated by use of lumped hysteretic representation. For this purpose, the hystertic model under axial force variation is developed and implemented into a nonlinear finite element analysis program. The analytical predictions obtained with the new formulation are compared with test results and reveal accuracy and applicability in terms of strength and stiffness. In addition, comparison between results with and without axial force variation stresses the importance of the proposed approach.

  • PDF

Analytical Study on the Flexural Moment Redistribution of Continuous Reinforced Concrete Beams (철근콘크리트 연속보의 휨모멘트 재분배에 관한 해석적 연구)

  • Cheon, Ju-Hyun;Seong, Dae-Jeong;Lee, Sang-Cheol;Shin, Hyun-Mock
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.385-388
    • /
    • 2006
  • The purpose of this study is to offer an appropriate method of the degree of the flexural moment redistribution for continuous reinforced concrete beams. Twenty-four two-span continuous beams were selected to determine the manner and degree of moment redistribution. The concept of ductility is linked to the moment redistribution capacity and, consequently, the safety of the structure. Knowledge of the plastic rotation capacity of plastic regions of the structure is important for a plastic analysis or a linear analysis with moment redistribution. A nonlinear finite element analysis program named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology) was used to evaluate the ultimate strength and degree of moment redistribution. The nonlinear material model for the reinforced concrete is composed of models for characterizing the behavior of the concrete, in addition to a model for characterizing the reinforcing bars.

  • PDF

Influence of Various Parameter for Nonlinear Finite Element Analysis of FRP-Concrete Composite Beam Using Concrete Damaged Plasticity Model (콘크리트 손상 소성모델을 이용한 FRP-콘크리트 합성보의 비선형 유한요소해석에서 여러 변수들의 영향)

  • Yoo, Seung-Woon;Kang, Ga-Ram
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.697-703
    • /
    • 2017
  • This paper examines the flexure behavior of FRP-concrete composite structure that can replace conventional reinforced concrete structure types. In order to investigate the structural performance and behavioral characteristics in numerical analysis means, ABAQUS, a general purpose finite element analysis program, was utilized for nonlinear finite element analysis, and the various variables and their influences were analyzed and compared with experimental results to suggest values optimized to this composite structure. The concrete damage plasticity model and Euro code for concrete were used. In the implicit finite element analysis, the convergence was ambiguous when geometrical and material nonlinearity were large, so the explicit finite element analysis used in this study was deemed to be appropriate. From the comparison with the experiment about concrete damaged plasticity model, 20mm for the mesh size, $30^{\circ}$ for the dilation angle, $100Nmm/mm^2$ for the value of fracture energy, 0.667 for Kc value, and the consideration of damage parameter were suggested believed to be appropriate. The numerical model suggested in this study was able to imitate the ultimate load and cracking pattern very well; therefore, it is expected to be utilized in research of various new material composite structures.

Verification of NASCOM : Nonlinear Finite Element Analysis for Structural Concrete (NASCOM에 의한 실험결과 예측)

  • 조순호
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.3
    • /
    • pp.187-195
    • /
    • 1996
  • A finite element formulation based on the CFT(Compression Field Theory), considering the effect of compression softening in cracked concrete, and macro-scopic and rotating crack models etc., was presented for the nonlinear behaviour of structural concrete. Considering the computational efficency and the ability of modelling the post-ultimate behaviour as major concerns, the Incremental displacement solution algorithm involving initial material stiffnesses and the relaxation procedure for fast convergence was adopted and formulated in a type of 8-noded quadrilateral isoparametric elements. The analysis program NASCOM(Non1inear Analysis of Structural Concrete by FEM : Monotonic Loading) developed in this way enables the predictions of strength and deformation capacities in a full range, crack patterns and their corresponding widths, and yield extents of reinforcement. As the verification purpose of NASCOM, the predictions were made for Bhide's Panel(PB21) and Leonhardt's deep beam tests. The predicted results shows somewhat stiff behaviour for the panel test, and vice versa for deep beam tests. More refining process would be necessary hereafter in terms of more accurately simulating the effects of tension-stiffening and compression softening in concrete.

Implementation of DSC Model for Clay-pile Interface Under Dynamic Load (동하중을 받는 점토-파일 접촉면 거동모사를 위한 DSC 모델의 수치해석적 이용)

  • Park, Inn-Joon;Yoo, Ji-Hyeung
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.3
    • /
    • pp.93-104
    • /
    • 2003
  • The Disturbed State Concept (DSC) model, with simplified unloading/reloading formulation, is implemented in a nonlinear dynamic finite element program fur porous media named DSC_DYN2D. In this research, the DSC constitutive model is utilized using the HiSS model for relative intact (RI) part and the critical state model for the fully adjusted (FA) part in the material. The general formulation for implementation is developed. The cyclic loading tests from the field load test data on a pile segment were numerically simulated using the finite element program DSC_DYN2D and compared with field measurements and those from the previous analysis with the HiSS model. The DSC predictions show improved agreement with the field behavior of the pile compared to those from the HiSS model. Overall, the computer procedure with the DSC model allows improved and realistic simulation of the complex dynamic soil-structure interaction problems.

Influence of spacers on ultimate strength of intermediate length thin walled columns

  • Anbarasu, M.;Sukumar, S.
    • Steel and Composite Structures
    • /
    • v.16 no.4
    • /
    • pp.437-454
    • /
    • 2014
  • The influence of spacers on the behaviour and ultimate capacity of intermediate length CFS open section columns under axial compression is investigated in this paper. The focus of the research lies in the cross- section predominantly, failed by distortional buckling. This paper made an attempt to either delay or eliminate the distortional buckling mode by the introduction of transverse elements referred herein as spacers. The cross-sections investigated have been selected by performing the elastic buckling analysis using CUFSM software. The test program considered three different columns having slenderness ratios of 35, 50 & 60. The test program consisted of 14 pure axial compression tests under hinged-hinged end condition. Models have been analysed using finite element simulations and the obtained results are compared with the experimental tests. The finite element package ABAQUS has been used to carry out non-linear analyses of the columns. The finite element model incorporates material, geometric non-linearities and initial geometric imperfection of the specimens. The work involves a wide parametric study in the column with spacers of varying depth and number of spacers. The results obtained from the study shows that the depth and number of spacers have significant influence on the behaviour and strength of the columns. Based on the nonlinear regression analysis the design equation is proposed for the selected section.

Three-Dimensional Structural Analysis System for Nuclear Containment Building (원자로 격납건물의 3차원 구조해석시스템)

  • Kim, Sun-Hoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.2
    • /
    • pp.235-243
    • /
    • 2010
  • Three-dimensional structural analysis system for nuclear containment building is presented in this paper. This system includes high-performance plate/shell elements as finite element library. It also adopts numerical modeling technique for unbonded tendon as well as bonded tendon in prestressed concrete structures. This system is constructed by connecting several in-house program to a commercial program DIANA, and then is capable of performing nonlinear analysis for ultimate pressure capacity of nuclear containment building. Finally, three-dimensional structural analysis of CANDU-type containment building is carried out in order to test the reliability of this system. These numerical results are compared with reference values, which obtained from axisymmetric structural analysis.

Finite Element Modeling of Strain Localization Zone in Concrete (콘크리트 변형률국소화영역의 유한요소모델링)

  • 송하원;나웅진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.53-60
    • /
    • 1997
  • The strain localization of concrete is a phenomenon such that the deformation of concrete is localized in finite region along with softening behavior. The objective of this paper is to develope a consistent algorithm for the finite element modeling of localized zone in the analysis of the strain-localization in concrete. For modeling of the localized zone in concrete under strain localization, a general Drucker-Prager failure criterion which can consider nonlinear strain softening behavior of concrete after peak-stress is introduce. The return-mapping algorithm is used for the integration of the elasto-plastic rate equation and the consistent tangent modulus is derived. Using finite element program implemented with the developed algorithms, strain localization behaviors for the different sizes of concrete specimen under compression are simulated.

  • PDF

Numerical modelling of FRP strengthened RC beam-column joints

  • Mahini, Seyed S.;Ronagh, Hamid R.
    • Structural Engineering and Mechanics
    • /
    • v.32 no.5
    • /
    • pp.649-665
    • /
    • 2009
  • This paper reports part of a comprehensive research study conducted at the University of Queensland on the ability of CFRP web-bonded systems in strengthening an exterior beam-column joint subjected to monotonic loads. One 1/2.2 scaled plain and four CFRP repaired/retrofitted joints subjected to monotonic loads were analysed using the nonlinear finite-element program ANSYS and the results were calibrated against experiments. The ANSYS model was employed in order to account for tension stiffening in concrete after cracking and a modified version of the Hognestad's model was used to model the concrete compressive strength. The stress-strain properties of main steel bars were modelled using multilinear isotropic hardening model and the FRPs were modelled as anisotropic materials. A perfect bond was assumed as nodes were shared between adjacent elements irrespective of their type. Good agreement between the numerical predictions and the experimental observation of the failure mechanisms for all specimens were observed. Closeness of these results proved that the numerical analysis can be used by design engineers for the analysis of web-bonded FRP strengthened beam-column joints with confidence.

Analytical and numerical studies on hollow core slabs strengthened with hybrid FRP and overlay techniques

  • Kankeri, Pradeep;Prakash, S. Suriya;Pachalla, Sameer Kumar Sarma
    • Structural Engineering and Mechanics
    • /
    • v.65 no.5
    • /
    • pp.535-546
    • /
    • 2018
  • The objective of this study is to understand the behaviour of hollow core slabs strengthened with FRP and hybrid techniques through numerical and analytical studies. Different strengthening techniques considered in this study are (i) External Bonding (EB) of Carbon Fiber Reinforced Polymer (CFRP) laminates, (ii) Near Surface Mounting (NSM) of CFRP laminates, (iii) Bonded Overlay (BO) using concrete layer, and (iv) hybrid strengthening which is a combination of bonded overlay and NSM or EB. In the numerical studies, three-dimensional Finite Element (FE) models of hollow core slabs were developed considering material and geometrical nonlinearities, and a phased nonlinear analysis was carried out. The analytical calculations were carried out using Response-2000 program which is based on Modified Compression Field Theory (MCFT). Both the numerical and analytical models predicted the behaviour in agreement with experimental results. Parametric studies indicated that increase in the bonded overlay thickness increases the peak load capacity without reducing the displacement ductility. The increase in FRP strengthening ratio increased the capacity but reduced the displacement ductility. The hybrid strengthening technique was found to increase the capacity of the hollow core slabs by more than 100% without compromise in ductility when compared to their individual strengthening schemes.