DOI QR코드

DOI QR Code

Influence of Various Parameter for Nonlinear Finite Element Analysis of FRP-Concrete Composite Beam Using Concrete Damaged Plasticity Model

콘크리트 손상 소성모델을 이용한 FRP-콘크리트 합성보의 비선형 유한요소해석에서 여러 변수들의 영향

  • Yoo, Seung-Woon (Department of Civil Engineering, Catholic Kwandong University) ;
  • Kang, Ga-Ram (Department of Civil Engineering, Catholic Kwandong University)
  • 유승운 (가톨릭관동대학교 토목공학과) ;
  • 강가람 (가톨릭관동대학교 토목공학과)
  • Received : 2016.07.29
  • Accepted : 2017.02.03
  • Published : 2017.02.28

Abstract

This paper examines the flexure behavior of FRP-concrete composite structure that can replace conventional reinforced concrete structure types. In order to investigate the structural performance and behavioral characteristics in numerical analysis means, ABAQUS, a general purpose finite element analysis program, was utilized for nonlinear finite element analysis, and the various variables and their influences were analyzed and compared with experimental results to suggest values optimized to this composite structure. The concrete damage plasticity model and Euro code for concrete were used. In the implicit finite element analysis, the convergence was ambiguous when geometrical and material nonlinearity were large, so the explicit finite element analysis used in this study was deemed to be appropriate. From the comparison with the experiment about concrete damaged plasticity model, 20mm for the mesh size, $30^{\circ}$ for the dilation angle, $100Nmm/mm^2$ for the value of fracture energy, 0.667 for Kc value, and the consideration of damage parameter were suggested believed to be appropriate. The numerical model suggested in this study was able to imitate the ultimate load and cracking pattern very well; therefore, it is expected to be utilized in research of various new material composite structures.

본 연구는 기존의 철근 콘크리트 구조형식을 대신할 FRP-콘크리트 합성구조의 휨거동에 관한 것이다. 구조적 성능 및 거동 특성을 수치 해석적으로 규명하고자 범용 유한요소 해석 프로그램인 ABAQUS를 사용하여 비선형 유한요소해석을 실시하였으며, 이때 사용하게 되는 여러 변수들의 영향을 실험 결과와 비교, 분석하여 본 합성구조에 최적화된 변수 값을 제시하고자 하였다. 합성구조의 구조재료모델은 콘크리트 손상소성모델(concrete damage plasticity model)을 사용하였고 콘크리트 압축응력관계식은 유로규준(Euro code)를 이용하였다. 내연적 유한요소해석의 경우 기하학적, 재료적 비선형성이 큰 경우 수렴에 많은 문제가 있으므로 본 연구의 경우 외연적 유한요소해석법이 적절한 것으로 판단된다. 콘크리트 손상 소성 모델의 여러 변수들에 대해 실험값과 비교한 결과 본 연구의 경우, 요소 크기는 20mm, 팽창각은 $30^{\circ}$, 파괴에너지 값은 $100Nm/m^2$, 변수 Kc는 0.667, 손상계수는 고려하는 것이 적절한 것으로 판단된다. 제시된 수치모델의 경우 신소재 합성보의 극한하중 및 균열패턴을 실험과 비교적 유사하게 표현할 수 있으므로 앞으로 다양한 합성구조의 수치해석에 적용 가능하리라 판단된다.

Keywords

References

  1. L. C. Bank, Composites for Construction: Structural Design with FRP Materials, John Wiley & Sons, NJ, USA, 2006. DOI: https://doi.org/10.1002/9780470121429
  2. L. C. Bank, M. G. Oliva, H. U. Bae, J. W. Barker, S. W. Yoo, "Pultruded FRP Plank as Formwork and Reinforcement for Concrete Members", Advances in Structural Engineering, vol. 10, no. 5, pp. 525-536, 2007. DOI: https://doi.org/10.1260/136943307782417681
  3. L. C. Bank, M. G. Oliva, H. U. Bae, B. V. Bindrich, "Hybrid Concrete and Pultruded-Plank Slabs for Hightway and Pedestrian Bridges" Construction and Building Materials, vol. 24, pp. 552-558, 2010. DOI: https://doi.org/10.1016/j.conbuildmat.2009.10.002
  4. K. W. Kim, H. S. Jeong, H. G. Beom, "Transient Dynamic Analysis of a Patterned Tire Rolling over a Cleat with and Explicit Finite Element Program", Transactions of the Korean Society of Automotive Engineers, vol. 11, no. 6, pp. 164-170, 2003.
  5. D. G. Ahn, D. W. Jung, D. Y. Yang, W. J. Jung, "Rigid-Plastic Explicit Finite Element Formulation for Two-Dimensional Analysis of Sheet Metal Forming Processes", Journal of Mechanical Science and Technology, vol. 20, no. 1, pp. 88-99, 1996.
  6. ABAQUS, User's manual 6.14, 2014.
  7. C. H. Um, S. W. Yoo, "An Experimental Study for Flexural Failure Behavior of Composite Beam with Cast-in-place High Strength Concrete and GFRP Plank Using As a Permanent Formwork and Tensile Reinforcement", Joural of the Korean Society of Civil Engineers, vol. 35, no. 5, pp. 1015-1025, 2015. DOI: https://doi.org/10.12652/Ksce.2015.35.5.1015
  8. J. Lubliner, J. Oliver, S. Oller, E. Onate, "A Plastic-Damage Model for Concrete", International Journal of Solids and Structures, vol. 25, no. 3, pp. 299-326, 1989. DOI: https://doi.org/10.1016/0020-7683(89)90050-4
  9. J. Lee, G. L. Fenves, "Plastic-Damage Model for Cyclic Loading of Concrete Structures", Journal of Engineering Mechanics, vol. 124, no. 8, pp. 892-900, 1998. DOI: https://doi.org/10.1061/(ASCE)0733-9399(1998) 124:8(892)
  10. P. Kmiecik and M. Kaminski, "Modelling of Reinforced Concrete Structures and Composite Structures with Concrete Strength Degradation Taken into Consideration", Archives of Civil and Mechanical Engineering, vol. 11, no. 3, pp. 623-636, 2011. DOI: https://doi.org/10.1016/S1644-9665(12)60105-8
  11. Eurocode 2, Design of Concrete Structure, Belgium, 2004.
  12. CEB-FIP Model Code, Thomas Telford, 1993.