• 제목/요약/키워드: nonlinear feedback

검색결과 894건 처리시간 0.011초

미지의 파라메터를 가진 비선형 시스템의 궤환 선형화 제어기개발. (Design of the Feedback linearizing Nonlinear Control with Uncertain Parameter.)

  • 주성준;서진헌
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.1134-1136
    • /
    • 1996
  • A necessary and suficient conditions is proposed for feedback linearizable SISO systems with unknown constant parameters. It is shown that the systems which satisfy the proposed conditions can be transformed into a controllable linear system with unknown parameter and it can be stabilized using the nonlinear feedback linearizing controller. We also present the analysis and implementation of a nonlinear feedback linearizing control for an Electro-Magnetic Suspension (EMS) system. We show that an EMS system is nonlinear feedback linearizable and satisfies the proposed conditions, and hence that the proposed nonlinear feedback controller for an EMS system is robust against mass parameter perturbation and force disturbance.

  • PDF

면역 피드백 메카니즘에 기초한 비선형 PID 제어기 설계 (Design of Nonlinear PID Controller Based on Immune Feedback Mechanism)

  • 박진현;최영규
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권3호
    • /
    • pp.134-141
    • /
    • 2003
  • PID controllers with constant gains have been widely used in various control systems due to its powerful performance and easy implementation. But it is difficult to have uniformly good control performance in all operating conditions. In this paper, we propose a nonlinear variable PR controller with immune feedback mechanism. An immune feedback mechanism is based on the functioning of biological T-cells, they include both an active term, which controls response speed. and an inhibitive term, which controls stabilization effect. Therefore, the proposed nonlinear PID controller is based on immune responses of biological. immune feedback mechanism which is the cell mediated immunity and In order to choose the optimal nonlinear PID controller games, we also propose the tuning algorithm of nonlinear function parameter in immune feedback mechanism. To verify performance of the proposed algorithm, the speed control of nonlinear DC motor are performed. Front the simulation results, we have found that the proposed algorithm is more superior to the conventional constant fain PID controller.

세포성 면역 반응을 이용한 비선형 PID 제어기 설계에 관한 연구 (A Study on Nonlinear PID Controller Design Using a Cell-Mediated Immune Response)

  • 박진현;최영규
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권5호
    • /
    • pp.259-267
    • /
    • 2003
  • In this paper, we propose a nonlinear variable PID controller using a cell-mediated immune response. An immune feedback response is based on the functioning of biological T-cells. An immune feedback response and P-controller of conventional PID controllers resemble each other in role and mechanism. Therefore, we extend immune feedback mechanism to nonlinear PE controller. And in order to choose the optimal nonlinear PID controller games, we also propose the on-line tuning algorithm of nonlinear functions parameters in immune feedback mechanism. The trained parameters of nonlinear functions are adapted to the variations of the system parameters and any command velocity. And the adapted parameters obtained outputs of nonlinear functions with an optimal control performance. To verify performances of the proposed control systems, the speed control of nonlinear BC motor is performed. The simulation results show that the proposed control systems are effective in tracking a command velocity under system variations.

NPVSS-NLMS 알.고리즘과 온라인 선형 피드백 경로 모델링을 이용한 비선형 능동 소음 제어 (Nonlinear ANC using a NPVSS-NLMS algorithm and online modelling of an acoustic linear feedback path)

  • 서재범;남상원
    • 전기학회논문지
    • /
    • 제59권5호
    • /
    • pp.1001-1004
    • /
    • 2010
  • Acoustic feedback and background noise variation can degrade the performance of an active noise control (ANC) system. In this paper, nonlinear ANC using a non-parametric VSS-NLMS (or NPVSS-NLMS) algorithm and online feedback path modeling is proposed, whereby the conventional linear ANC with online acoustic feedback-path modeling is further extended to nonlinear Volterra ANC with a linear acoustic feedback path. In particular, the step-size of the NPVSS-NLMS algorithm is controlled to reduce the effect of background noise variation in the ANC system. Simulation results demonstrate that the proposed approach yields better nonlinear ANC performance compared with the conventional nonlinear ANC method.

궤환선형화 가능한 비선형 시스템의 입력제한을 고려한 동적 와인드엎 방지 (A Dynamic Anti-windup Scheme for Input-constrained Feedback Linearizable Nonlinear Systems)

  • 윤성식;박종구;윤태웅
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.534-534
    • /
    • 2000
  • This paper proposes a dynamic compensation scheme for input-constrained feedback linearizable nonlinear systems to cope with the windup phenomenon. Given a feedback linearizing controller for such a nonlinear system designed without considering its input constraint, an additional dynamic compensator is proposed to account for the constraint. This dynamic anti-windup is based on the minimization of a reasonable performance index, and some stability properties of the resulting closed-loop are presented.

  • PDF

비선형 유압 서보시스템의 비선형 변환 및 이에 대한 선형제어에 관한 연구 (Application of the nonlinear transformation and linear state state feedback control to nonlinear hydraulic servo system)

  • 김영준;장효환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.272-275
    • /
    • 1989
  • In this paper feedback linearization of valve-controlled nonlinear hydraulic velocity control system is studied. The $C^{\infty}$ nonlinear transformation T is obtained, and it is shown that this transformation is global one. Linear equivalence of nonlinear hydraulic velocity control system is obtained by this global nonlinear transformation, and linear state feedback control law is applied to this linear model. It is shown that this transformation method is to the linear approximation by simulation study..

  • PDF

순궤환 비선형계통의 백스테핑 없는 적응 신경망 제어기 (Adaptive Neural Control for Strict-feedback Nonlinear Systems without Backstepping)

  • 박장현;김성환;박영환
    • 전기학회논문지
    • /
    • 제57권5호
    • /
    • pp.852-857
    • /
    • 2008
  • A new adaptive neuro-control algorithm for a SISO strict-feedback nonlinear system is proposed. All the previous adaptive neural control algorithms for strict-feedback nonlinear systems are based on the backstepping scheme, which makes the control law and stability analysis very complicated. The main contribution of the proposed method is that it demonstrates that the state-feedback control of the strict-feedback system can be viewed as the output-feedback control problem of the system in the normal form. As a result, the proposed control algorithm is considerably simpler than the previous ones based on backstepping. Depending heavily on the universal approximation property of the neural network (NN), only one NN is employed to approximate the lumped uncertain system nonlinearity. The Lyapunov stability of the NN weights and filtered tracking error is guaranteed in the semi-global sense.

완전 궤환 비선형 계통에 대한 자기 구조화 퍼지 시스템을 이용한 상태변수 및 출력 궤환 적응 제어기 (State- and Output-feedback Adaptive Controller for Pure-feedback Nonlinear Systems using Self-structuring Fuzzy System)

  • 박장현;김성환;장영학;유영재
    • 전기학회논문지
    • /
    • 제61권9호
    • /
    • pp.1319-1329
    • /
    • 2012
  • Globally stabilizing adaptive fuzzy state- and output-feedback controllers for the fully nonaffine pure-feedback nonlinear system are proposed in this paper. By reformulating the original pure-feedback system to a standard normal form with respect to newly defined state variables, the proposed controllers require no backstepping design procedures. Avoiding backstepping makes the controller structure and stability analysis to be considerably simplified. For the global stabilty of the clossed-loop system, the self-structuring fuzzy system whose memebership functions and fuzzy rules are automatically generated and tuned is adopted. The proposed controllers employ only one fuzzy logic system to approximate unknown nonlinear function, which highlights the simplicity of the proposed adaptive fuzzy controller. Moreover, the output-feedback controller of the considered system proposed in this paper have not been dealt with in any literature yet.

단일상태 feedback을 가지는 계의 최적 비선형제어기 설계에 관한 연구 (A study on the design of the optimal nonlinear controller for single state feedback)

  • 노용균;조겸래
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1988년도 한국자동제어학술회의논문집(국내학술편); 한국전력공사연수원, 서울; 21-22 Oct. 1988
    • /
    • pp.206-209
    • /
    • 1988
  • For feedback control of a linear dynamic system the optimum linear slace regulator (OLSR) can be implemented only if all state are available for feedback. This work demonstrates that when only the output state is available for feedback, a nonlinear controllers can be improved performance over that obtained by a proportional controller. This paper found the optimal control law by well-known dynamic programming and principles of optimality. Thus, performance of both proportional and nonlinear controllers is compared with performance of optimum linear state regulator.

  • PDF

비선형 시스템의 제한된 dynamic feedback 을 사용한 선형화 (Linearization of Nonlinear Control Systems using a Restricted Class of Dynamic Feedback)

  • 이홍기;전홍태
    • 전자공학회논문지B
    • /
    • 제31B권8호
    • /
    • pp.47-56
    • /
    • 1994
  • The dynamic feedback is well-known to be much more powerful tool in control than the static one. This paper deals with the dynamic feedback linearization of the nonlinear systems which are not (static) feedback linearizable. The dynamic feedback linearization problem is however too difficult to solve at momemt. Thus we introduce a restricted class of the dynamic feedback (pure integrators followed by the static feedback) which is often used to study the problems using dynamic feedback and obtain the necessary and sufficient conditions of the linearization problem using this class of the dynamic feedback.

  • PDF