• Title/Summary/Keyword: nonlinear failure criterion

Search Result 88, Processing Time 0.021 seconds

Nonlinear analysis of RC beams strengthened by externally bonded plates

  • Park, Jae-Guen;Lee, Kwang-Myong;Shin, Hyun-Mock;Park, Yoon-Je
    • Computers and Concrete
    • /
    • v.4 no.2
    • /
    • pp.119-134
    • /
    • 2007
  • External bonding of steel or FRP plates to reinforced concrete (RC) structures has been a popular method for strengthening RC structures; however, unexpected premature failure often occurs due to debonding between the concrete and the epoxy. We proposed a Coulomb criterion with a constant failure surface as the debonding failure criterion for the concrete-epoxy interface. Diagonal shear bonding tests were conducted to determine the debonding properties that were related to the failure criterion, such as the angle of internal friction and the coefficient of cohesion. In addition, an interface element that utilized the Coulomb criterion was implemented in a nonlinear finite element analysis program to simulate debonding failure behavior. Experimental studies and numerical analysies on RC beams strengthened by an externally bonded steel or FRP plate were used to determine the range of the coefficient of cohesion. The results that were presented prove that premature failure loads of strengthened RC beams can be predicted with using the bonding properties and the finite element program with including the proposed Coulomb criterion.

Criterion for judging seismic failure of suspen-domes based on strain energy density

  • Zhang, Ming;Parke, Gerry;Tian, Shixuan;Huang, Yanxia;Zhou, Guangchun
    • Earthquakes and Structures
    • /
    • v.15 no.2
    • /
    • pp.123-132
    • /
    • 2018
  • In this paper the strain energy density (SED) model is used to analyze the seismic behavior of suspen-domes and a new criterion is established for judging the seismic failure based on a characteristic point in the SED model. Firstly, a nonlinear time-history response analysis was carried out using the finite-element package ANSYS for typical suspen-domes subjected to different ground motions. The seismic responses including nodal displacements, ratios of yielding members, strain energy density and structural maximum deformation energy were extracted corresponding to the increasing peak ground acceleration (A). Secondly, the SED sum ($I_d$) was calculated which revealed that the $I_d-A$ curve exhibited a relatively large change (called a characteristic point) at a certain value of A with a very small load increment after the structures entered the elastic-plastic state. Thirdly, a SED criterion is proposed to judge the seismic failure load based on the characteristic point. Subsequently, the case study verifies the characteristic point and the proposed SED criterion. Finally, this paper describes the unity and application of the SED criterion. The SED method may open a new way for structural appraisal and the SED criterion might give a unified criterion for predicting the failure loads of various structures subjected to dynamic loads.

Effect of hydraulic distribution on the stability of a plane slide rock slope under the nonlinear Barton-Bandis failure criterion

  • Zhao, Lian-Heng;Cao, Jingyuan;Zhang, Yingbin;Luo, Qiang
    • Geomechanics and Engineering
    • /
    • v.8 no.3
    • /
    • pp.391-414
    • /
    • 2015
  • In this paper, stabilities of a plane slide rock slope under different hydraulic distributions were studied based on the nonlinear Barton-Bandis (B-B) failure criterion. The influence of various parameters on the stability of rock slopes was analyzed. Parametric analysis indicated that studying the factor of safety (FS) of planar slide rock slopes using the B-B failure criterion is both simple and effective and that the effects of the basic friction angle of the joint (${\varphi}_b$), the joint roughness coefficient (JRC), and the joint compressive strength (JCS) on the FS of a planar slide rock slope are significant. Qualitatively, the influence of the JCS on the FS of a slope is small, whereas the influences of the ${\varphi}_b$ and the JRC are significant. The FS of the rock slope decreases as the water in a tension crack becomes deeper. This trend is more significant when the flow outlet is blocked, a situation that is particularly prevalent in regions with permafrost or seasonal frozen soil. Finally, the work is extended to study the reliability of the slope against plane failure according to the uncertainty from physical and mechanics parameters.

Comparative Study on the Rock Failure Criteria Taking Account of the Intermediate Principal Stress (중간주응력을 고려한 선형 및 비선형 암석파괴조건식의 비교 고찰)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.22 no.1
    • /
    • pp.12-21
    • /
    • 2012
  • Although the Mohr-Coulomb and Hoek-Brown failure criteria have been adopted widely in rock mechanics, they neglect the ${\sigma}_2$ effect. The result of true triaxial tests on rock samples, however, reveals that the ${\sigma}_2$ effect on strength of rocks is considerable, so that rock failure criteria taking into account the influence of ${\sigma}_2$ are necessary for the precise stability evaluation of rock structures. In this study, a new nonlinear 3-D failure criterion has been suggested by combining the Hoek-Brown criterion with the smooth octahedral shape function taken from Jiang & Pietruszczak (1988). The performance of the new criterion was assessed by comparing the strength predictions from both the suggested criterion and the corresponding linear 3-D criterion. The resulting fit of the new criterion to the true triaxial test data for six rock types taken from the literature shows that the criterion fits the experimental data very well. Furthermore, for the data sets having data taken in the low ${\sigma}_3$ range, the nonlinear failure criterion works better than the linear criterion.

Three-dimensional limit analysis of seismic stability of tunnel faces with quasi-static method

  • Zhang, B.;Wang, X.;Zhang, J.S.;Meng, F.
    • Geomechanics and Engineering
    • /
    • v.13 no.2
    • /
    • pp.301-318
    • /
    • 2017
  • Based on the existing research results, a three-dimensional failure mechanism of tunnel face was constructed. The dynamic seismic effect was taken into account on the basis of quasi-static method, and the nonlinear Mohr-Coulomb failure criterion was introduced into the limit analysis by using the tangent technique. The collapse pressure along with the failure scope of tunnel face was obtained through nonlinear limit analysis. Results show that nonlinear coefficient and initial cohesion have a significant impact on the collapse pressure and failure zone. However, horizontal seismic coefficient and vertical seismic proportional coefficient merely affect the collapse pressure and the location of failure surface. And their influences on the volume and height of failure mechanism are not obvious. By virtue of reliability theory, the influences of horizontal and vertical seismic forces on supporting pressure were discussed. Meanwhile, safety factors and supporting pressures with respect to 3 different safety levels are also obtained, which may provide references to seismic design of tunnels.

Prediction of Bonding Failure Load of RC Beams Strengthened by Externally Bonded Steel Plates (강판으로 보강된 RC보의 부착파괴하중 예측)

  • 박윤재;신동혁;이광명;신현목
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.729-732
    • /
    • 1999
  • In this paper, the Mohr-Coulomb criterion was adopted to predict the bonding failure load of the reinforced concrete beams strengthened by the externally bonded steel plates. Based on this criterion, a nonlinear analysis program of APSB(Analysis Program for Strengthened Beams) and nonlinear finite element analysis program of RCSD-SB (Reinforced Concrete Structural Design - Strengthened Beams) were developed. Numerical results were then compared with experimental results and good agreements were obtained.

  • PDF

Roof collapse of shallow tunnel in layered Hoek-Brown rock media

  • Yang, X.L.;Li, K.F.
    • Geomechanics and Engineering
    • /
    • v.11 no.6
    • /
    • pp.867-877
    • /
    • 2016
  • Collapse shape of tunnel roof in layered Hoek-Brown rock media is investigated within the framework of upper bound theorem. The traditional collapse mechanism for homogeneous stratum is no longer suitable for the present analysis of roof stability, and it would be necessary to propose a curve failure mode to describe the velocity discontinuity surface in layered media. What is discussed in the paper is that the failure mechanism of tunnel roofs, consisting of two different functions, is proposed for layered rock media. Then it is employed to investigate the impending roof failure. Based on the nonlinear Hoek-Brown failure criterion, the collapse volume of roof blocks are derived with the upper bound theorem and variational principle. Numerical calculations and parametric analysis are carried out to illustrate the effects of different parameters on the shape of failure mechanism, which is of overriding significance to the stability analysis of tunnel roof in layered rock media.

Deterioration in strength of studs based on two-parameter fatigue failure criterion

  • Wang, Bing;Huang, Qiao;Liu, Xiaoling
    • Steel and Composite Structures
    • /
    • v.23 no.2
    • /
    • pp.239-250
    • /
    • 2017
  • In the concept of two-parameter fatigue failure criterion, the material fatigue failure is determined by the damage degree and the current stress level. Based on this viewpoint, a residual strength degradation model for stud shear connectors under fatigue loads is proposed in this study. First, existing residual strength degradation models and test data are summarized. Next, three series of 11 push-out specimen tests according to the standard push-out test method in Eurocode-4 are performed: the static strength test, the fatigue endurance test and the residual strength test. By introducing the "two-parameter fatigue failure criterion," a residual strength calculation model after cyclic loading is derived, considering the nonlinear fatigue damage and the current stress condition. The parameters are achieved by fitting the data from this study and some literature data. Finally, through verification using several literature reports, the results show that the model can better describe the strength degradation law of stud connectors.

Pseudo-static stability analysis of wedges based on the nonlinear Barton-Bandis failure criterion

  • Zhao, Lianheng;Jiao, Kangfu;Zuo, Shi;Yu, Chenghao;Tang, Gaopeng
    • Geomechanics and Engineering
    • /
    • v.20 no.4
    • /
    • pp.287-297
    • /
    • 2020
  • This paper investigates the stability of a three-dimensional (3D) wedge under the pseudo-static action of an earthquake based on the nonlinear Barton-Bandis (B-B) failure criterion. The influences of the mechanical parameters of the discontinuity surface, the geometric parameters of the wedge and the pseudo-static parameters of the earthquake on the stability of the wedge are analyzed, as well as the sensitivity of these parameters. Moreover, a stereographic projection is used to evaluate the influence of pseudo-static direction on instability mode. The parametric analyses show that the stability coefficient and the instability mode of the wedge depend on the mechanical parameter of the rock mass, the geometric form of the wedge and the pseudo-static state of the earthquake. The friction angle of the rock φb, the roughness coefficient of the structure surface JRC and the two angles related to strikes of the joints θ1 and θ2 are sensitive to stability. Furthermore, the sensitivity of wedge height h, the compressive strength of the rock at the fracture surface JCS and the slope angle α to the stability are insignificant.

Application of FEM on first ply failure of composite hypar shells with various edge conditions

  • Ghosh, Arghya;Chakravorty, Dipankar
    • Steel and Composite Structures
    • /
    • v.32 no.4
    • /
    • pp.423-441
    • /
    • 2019
  • This study aims to accurately predict the first ply failure loads of laminated composite hypar shell roofs with different boundary conditions. The geometrically nonlinear finite element method (FEM) is used to analyse different symmetric and anti-symmetric, cross and angle ply shells. The first ply failure loads are obtained through different well-established failure criteria including Puck's criterion along with the serviceability criterion of deflection. The close agreement of the published and present results for different validation problems proves the correctness of the finite element model used in the present study. The effects of edge conditions on first ply failure behavior are discussed critically from practical engineering point of view. Factor of safety values and failure zones are also reported to suggest design and non-destructive monitoring guidelines to practicing engineers. Apart from these, the present study indicates the rank wise relative performances of different shell options. The study establishes that the angle ply laminates in general perform better than the cross ply ones. Among the stacking sequences considered here, three layered symmetric angle ply laminates offer the highest first ply failure load. The probable failure zones on the different shell surfaces, identified in this paper, are the areas where non-destructive health monitoring may be restricted to. The contributions made through this paper are expected to serve as important design aids to engineers engaged in composite hypar shell design and construction.