Browse > Article
http://dx.doi.org/10.12989/gae.2020.20.4.287

Pseudo-static stability analysis of wedges based on the nonlinear Barton-Bandis failure criterion  

Zhao, Lianheng (School of Civil Engineering, Central South University)
Jiao, Kangfu (School of Civil Engineering, Central South University)
Zuo, Shi (School of Civil Engineering, Central South University)
Yu, Chenghao (School of Civil Engineering, Central South University)
Tang, Gaopeng (School of Civil Engineering, Central South University)
Publication Information
Geomechanics and Engineering / v.20, no.4, 2020 , pp. 287-297 More about this Journal
Abstract
This paper investigates the stability of a three-dimensional (3D) wedge under the pseudo-static action of an earthquake based on the nonlinear Barton-Bandis (B-B) failure criterion. The influences of the mechanical parameters of the discontinuity surface, the geometric parameters of the wedge and the pseudo-static parameters of the earthquake on the stability of the wedge are analyzed, as well as the sensitivity of these parameters. Moreover, a stereographic projection is used to evaluate the influence of pseudo-static direction on instability mode. The parametric analyses show that the stability coefficient and the instability mode of the wedge depend on the mechanical parameter of the rock mass, the geometric form of the wedge and the pseudo-static state of the earthquake. The friction angle of the rock φb, the roughness coefficient of the structure surface JRC and the two angles related to strikes of the joints θ1 and θ2 are sensitive to stability. Furthermore, the sensitivity of wedge height h, the compressive strength of the rock at the fracture surface JCS and the slope angle α to the stability are insignificant.
Keywords
three-dimensional rock wedge; pseudo-static stability analysis; nonlinear Barton-Bandis failure criterion; stereographic projection; design charts;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Florkiewicz, A. and Kubzdela, A. (2013), "Factor of safety in limit analysis of slopes", Geomech. Eng., 5(5), 485-497. https://doi.org/10.12989/gae.2013.5.5.485.   DOI
2 Goodman, R.E. (1989), Introduction to Rock Mechanics, John Wiley & Sons, New York, U.S.A.
3 He, J.M., Xu, M.H., Ma, D.X. and Cao, J. (2012), "The application of Barton structural plane shear strength formula in Murum Hydropower Station, Malaysia", Resour. Environ. Eng., 5, 542-544. http://dx.doi.org/10.16536/j.cnki.issn.1671-1211.2012.05.026.
4 Hoek, E. and Bray, J.W. (1981), Rock Slope Engineering, The Institution of Mining and Metallurgy, London, England, U.K.
5 Itasca Consulting Group, Inc. (2007a), 3DEC 4.1 Theory and Background, Minneapolis, Minnesota, U.S.A.
6 Itasca Consulting Group, Inc. (2007b), 3DEC 4.1 Command Reference, Minneapolis, Minnesota, U.S.A.
7 Janbu, N. (1954), "Application of composite slip surfaces for stability analysis", Proceedings of the European Conference on Stability of Earth Slopes, Stockholm, Sweden, September.
8 Jiang, Q., Liu, X., Wei, W. and Zhou, C. (2013), "A new method for analyzing the stability of rock wedges", Int. J. Rock Mech. Min. Sci., 60(2), 413-422. http://dx.doi.org/10.1016/j.ijrmms.2013.01.008.   DOI
9 Jiang, Q.Q. (2009), "Stability of point safety factor of slope based on Hoek-Brown criterion", J. Central South. Univ., 40(3), 786-790. http://dx.doi.org/10.1016/S1874-8651(10)60073-7.
10 Jimenez-Rodriguez, R. and Sitar, N. (2007), "Rock wedge stability analysis using system reliability methods", Rock Mech. Rock Eng., 40, 419-427. http://dx.doi.org/10.1007/s00603-005-0088-x.   DOI
11 Johari, A. and Lari, A.M. (2016), "System reliability analysis of rock wedge stability considering correlated failure modes using sequential compounding method", Int. J. Rock Mech. Min. Sci., 82(3), 61-70. http://dx.doi.org/10.1016/j.ijrmms.2015.12.002.   DOI
12 Liu, W.M., Fu, H. and Wu, J.L. (2005), "Current Situation of determination methods of shear strength parameters of rock-mass discontinuities and new thoughts", J. ChongQing JiaoTong Univ., 24(5), 65-67.   DOI
13 Johari, A. and Lari, A.M. (2017), "System probabilistic model of rock slope stability considering correlated failure modes", Comput. Geotech., 81, 26-38. http://dx.doi.org/10.1016/j.compgeo.2016.07.010.   DOI
14 Li, C.C., Jiang, P.M and Zhou, A.Z. (2019), "Rigorous solution of slope stability under seismic action", Comput. Geotech., 109, 99-107. http://dx.doi.org/10.1016/j.compgeo.2019.01.018.   DOI
15 Liang, T. and Knappett, J.A. (2017), "Newmark sliding block model for predicting the seismic performance of vegetated slopes", Soil Dyn. Earthq. Eng., 101, 27-40. http://dx.doi.org/10.1016/j.soildyn.2017.07.010.   DOI
16 Li, D., Zhou, C., Lu, W. and Jiang, Q.H. (2009), "A system reliability approach for evaluating stability of rock wedges with correlated failure modes", Comput. Geotech., 36(8), 1298-1307. http://dx.doi.org/10.1016/j.compgeo.2009.05.013.   DOI
17 Lin, Y.L. and Li, X.X. (2014), "Pseudo-static analysis of seismic stabmty of anchored rock slope based on JRC-JMC failure criterion", China Civ. Eng. J., 47(S1), 269-273.
18 Liu, L.P., Yao, L.H., Chen, J. and Wang, C.H. (2010), "Rock slope stability analysis based on Hoke-Brown failure criterion", Chin. J. Rock Mech. Eng., 29(S1), 2879-2886. http://dx.doi.org/10.1016/j.compgeo.2016.07.010.
19 Londe, P., Vigier, G. and Vormeringer, R. (1969) "Stability of rock slopes, a three-dimensional study", J. Soil Mech. Found. Div., 95, 235-262.   DOI
20 Loukidis, D., Bandini, P. and Salgado, R. (2003), "Stability of seismically loaded slopes using limit analysis", Geotechnique, 53, 463-479. http://dx.doi.org/10.1680/geot.2003.53.5.463.   DOI
21 Prassetyo, S.H., Gutierrez, M. and Barton, N. (2017), "Nonlinear shear behavior of rock joints using a linearized implementation of the Barton-Bandis model", J. Rock Mech. Geotech. Eng., 9(4), 671-682. http://dx.doi.org/10.1016/j.jrmge.2017.01.006.   DOI
22 Low, B.K. (1997), "Reliability analysis of rock wedges", J. Geotech. Geoenviron. Eng., 123(6), 498-505. http://dx.doi.org/10.1061/(ASCE)1090-0241(1997)123:6(498).   DOI
23 Luo, Q., Zhao, L.H., Li, L., Tan, H.H. and Luo, W. (2013), "Stability analysis of anchored rock slope based on Barton-Bandis failure criterion" Rock Soil Mech., 34(05), 1351-1359. http://dx.doi.org/10.16285/j.rsm.2013.05.004.
24 Nagpal, A. and Basha, B.M. (2012), "Reliability analysis of anchored rock slopes against planar failure", Proceedings of the Indian Geotechnical Conference, New Delhi, India.
25 Nathanail, C.P. (1996), "Kinematic analysis of active/passive wedge failure using stereographic projection", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 33(4), 405-407. http://dx.doi.org/10.1016/0148-9062(95)00079-8.   DOI
26 Nouri H., Fakher A. and Jones C.J.F.P. (2008), "Evaluating the effects of the magnitude and amplification of pseudo-static acceleration on reinforced soil slopes and walls using the limit equilibrium horizontal slices method", Geotext. Geomembr., 26, 263-278. http://dx.doi.org/10.1016/j.geotexmem.2007.09.002.   DOI
27 Qin, C.Q and Chian, S.C. (2018), "Seismic bearing capacity of non-uniform soil slopes using discretization-based kinematic analysis considering Rayleigh waves", Soil Dyn. Earthq. Eng., 109, 23-32 http://dx.doi.org/10.1016/j.soildyn.2018.02.017.   DOI
28 Sarma, S.K. (1979), "Stability analysis of embankments and slopes", J. Geotech. Eng. Div., 105(12), 1511-1524. http://dx.doi.org/10.1680/geot.1973.23.3.423.   DOI
29 Sharma, S., Raghuvanshi, T.K. and Anbalagan, R. (1995), "Plane failure analysis of rock slopes", Geotech. Geol. Eng., 13(2), 105-111. http://dx.doi.org/10.1007/BF00421876.   DOI
30 Baker, R. and Garber, M. (1978), "Theoretical analysis of the stability of slopes", Geotechnique, 28(4), 395-411. http://dx.doi.org/10.1680/geot.1978.28.4.395.   DOI
31 Bandis, S., Lumsden, A.C. and Barton, N.R. (1981), "Experimental studies of scale effects on the shear behaviour of rock joints", Int. J. Rock Mech. Min. Sci., 18(1), 1-21. http://dx.doi.org/10.1016/0148-9062(81)90262-X.
32 Barton, N. and Choubey, V. (1977), "The shear strength of rock joints in theory and practice", Rock Mech., 10(1), 1-54. http://dx.doi.org/10.1007/BF01261801.   DOI
33 Wang, Z.D., Xia, Y.Y. and Xia, G.B. (2015), "Upper bound limit analysis method for stability analysis of bedding rock slopes", Rock Soil Mech., 36(2), 576-583. http://dx.doi.org/10.16285/j.rsm.2015.02.038.
34 Shukla, S.K. and Hossain, M.M. (2011), "Stability analysis of multi-directional anchored rock slope subjected to surcharge and seismic loads", Soil Dyn. Earthq. Eng., 31(5-6), 841-844. http://dx.doi.org/10.1016/j.soildyn.2011.01.008.   DOI
35 Terzaghi K. (1950), Mechanisms of Landslides, Engineering Geology (Berdey) Volume, in Geotechnical Society of America, 83-125.
36 Xia, C.C. and Sun, Z.G. (2002), Engineering Rock Mass Joint Mechanics, Tongji University Press, Shanghai, China.
37 Wittke, W. (2015), "Rock mechanics based on an anisotropic jointed rock model (AJRM)", J. Rock Mech. Geotech. Eng., 7(5), 607-608.   DOI
38 Wittke W. (2014), Rock Mechanics Based on an Anisotropic Jointed Rock Model (AJRM), John Wiley & Sons.
39 Yang, X.L. and Pan, Q.J. (2015), "Three dimensional seismic and static stability of rock slopes", Geomech. Eng., 8(1), 97-111. http://dx.doi.org/10.12989/gae.2015.8.1.097.   DOI
40 Zhang, G. and Zhu, W.S. (1993), "Parameter sensitivity analysis and test scheme optimization", Rock Soil Mech., 14(1), 51-58.
41 Zhao, J. (1998), "A new JRC-JMC shear strength criterion for rock joint", Chin. J. Rock Mech. Eng., 17, 349-357.
42 Zhao, L.H., Cao, J., Zhang, Y. and Luo, Q. (2015), "Effect of hydraulic distribution form on the stability of a plane slide rock slope under the nonlinear Barton-Bandis failure criterion", Geomech. Eng., 8(3), 391-414. http://doi.org/10.12989/gae.2015.8.3.391.   DOI
43 Choi, S.O. and Chung, S.K. (2004), "Stability analysis of a jointed rock slope with the Barton-Bandis Joint Constitutive Model using UDEC", Int. J. Rock Mech. Min. Sci., 41(2), 581-586. http://dx.doi.org/10.1016/j.ijrmms.2004.03.103.   DOI
44 Zhao, L.H., Cheng, X., Zhang, Y., Li, L. and Li, D.J. (2016), "Stability analysis of seismic slopes with cracks", Comput. Geotech., 77, 77-90. http://dx.doi.org/10.1016/j.compgeo.2016.04.007.   DOI
45 Basha, B.M. and Babu, G.L.S. (2010), "Reliability assessment of internal stability of reinforced soil structures: A pseudo-dynamic approach", Soil Dyn. Earthq. Eng., 30, 336-353. http://dx.doi.org/10.1016/j.soildyn.2009.12.007.   DOI
46 Basha, B.M. and Moghal, A.A.B. (2013), "Load resistance factor design (LRFD) approach for reliability based seismic design of rock slopes against wedge failures", Proceedings of the Geo-Congress 2013 on Design, Analysis and Performance of Rock Slopes and Rock Fill, San Diego, California, U.S.A., March.
47 Chen, J., Yin, J.H. and Lee, C.F. (2003), "Upper bound limit analysis of slope stability using rigid finite elements and nonlinear programming", Can. Geotech. J., 40(4), 742-752. http://dx.doi.org/10.1139/t03-032.   DOI
48 Chen, W.F. (1975), Limit Analysis and Soil Plasticity, Elsevier Scientific Publishing Company, Amsterdam, The Netherlands.
49 Zhao, L.H., Cheng, X., Dan, H.C., Tang, Z.P. and Zhang, Y. (2017), "Effect of vertical earthquake component on the permanent seismic displacement of soil slopes based on the nonlinear Mohr-Coulomb failure criterion", Soils Found., 57(2), 237-251. http://dx.doi.org/10.1016/j.sandf.2016.12.002.   DOI
50 Itasca Consulting Group, Inc. (2017), Distinct element method, http://www.itascacg.com/software/products/udec/distinct-element-method.
51 Wyllie, D. (2004), Rock Slope Engineering: Civil and Mining, Spon Press, New York, U.S.A.
52 Fellenius, W. (1936), "Calculation of the stability of earth dams", Proceedings of the Transactions of the 2nd Congress on Large Dams, Washington, D.C., U.S.A., International Commission on Large Dams (ICOLD), Paris, France.
53 Du, W. (2018), "Effects of directionality and vertical component of ground motions on seismic slope displacements in Newmark sliding-block analysis", Eng. Geol., 239, 12-21. http://dx.doi.org/10.1016/j.enggeo.2018.03.012.
54 Feng, P. and Lajtai, E.Z. (1998), "Probabilistic treatment of the sliding wedge with EzSlide", Eng. Geol., 50(1), 153-163. http://dx.doi.org/10.1016/s0013-7952(98)00007-6.   DOI
55 Feng, S.R. (1999), "3D limit equilibrium method for slope stability and its application", Chin. J. Geotech. Eng., 21(6), 657-661.