• 제목/요약/키워드: nonlinear elastic strain

검색결과 188건 처리시간 0.022초

A shooting method for buckling and post-buckling analyses of FGSP circular plates considering various patterns of Pores' placement

  • Khaled, Alhaifi;Ahmad Reza, Khorshidvand;Murtadha M., Al-Masoudy;Ehsan, Arshid;Seyed Hossein, Madani
    • Structural Engineering and Mechanics
    • /
    • 제85권3호
    • /
    • pp.419-432
    • /
    • 2023
  • This paper studies the effects of porosity distributions on buckling and post-buckling behaviors of a functionally graded saturated porous (FGSP) circular plate. The plate is under the uniformly distributed radial loading and simply supported and clamped boundary conditions. Pores are saturated with compressible fluid (e.g., gases) that cannot escape from the porous solid. Elastic modulus is assumed to vary continuously through the thickness according to three different functions corresponding to three different cases of porosity distributions, including monotonous, symmetric, and asymmetric cases. Governing equations are derived utilizing the classical plate theory and Sanders nonlinear strain-displacement relations, and they are solved numerically via shooting method. Results are verified with the known results in the literature. The obtained results for the monotonous and symmetric cases with the asymmetric case presented in the literature are shown in comparative figures. Effects of the poroelastic material parameters, boundary conditions, and thickness change on the post-buckling behavior of the plate are discussed in details. The results reveal that buckling and post-buckling behaviors of the plate in the monotonous and symmetric cases differ from the asymmetric case, especially in small deflections, that asymmetric distribution of elastic moduli can be the cause.

개선된 고차이론을 이용한 복합재료 적층구조물의 탄성 및 점탄성적 휨, 진동해석 (Bending and Vibration Analysis of Elastic and Viscoelastic Laminated Composite Structures using an Improved Higher-order Theory)

  • 한성천;유용민;박대용;장석윤
    • 한국강구조학회 논문집
    • /
    • 제14권1호
    • /
    • pp.1-12
    • /
    • 2002
  • 복합재료 적층판의 보다 정확한 해석결과를 얻기 위해서는 종방향 전단변형, 종방향 수직 변형율/응력에 의한 효과와 두께방향 좌표에 관한 면내변위의 비선형 변화등이 고려되어야 한다. 본 연구에서는 개선된 고차이론을 이용하여 복합재료 적층구조물의 처짐 및 고유 진동수를 구한다. 점탄성 해석을 위하여 Quasi-elastic 방법을 사용하였다. 단순지지된 복합재료 적층판 및 샌드위치의 해석결과들은 3차원 탄성해석결과와 다른 이론들에 의한 결과와 비교하였다. 본 연구의 해석결과가 다른 이론들보다 좀 더 정확한 결과를 나타내었다.

TIME-DEPENDENT FRACTURE OF ARTICULAR CARTILAGE: PART 1 - THEORY & VALIDATION

  • 문무성
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1995년도 춘계학술대회
    • /
    • pp.27-33
    • /
    • 1995
  • A time-dependent large deformation fracture theory is developed for application to soft biological tissues. The theory uses the quasilinear viscoelastic theory of Fung, and particularizes it to constitutive assumptions on polyvinyl-chloride (PVC) (Part I) and cartilage (Part II). This constitutive theory is used in a general viscoelastic theory by Christensen and Naghdi and an energy balance to develop an expression for the fracture toughness of the materials. Experimental methods are developed for measuring the required constitutive parameters and fracture data for the materials. Elastic stress and reduced relaxation functions were determined using tensile and shear tests at high loading rates with rise times of 25-30 msec, and test times of 150 sec. The developed method was validated, using an engineering material, PVC to separate the error in the testing method from the inherent variation of the biological tissues. It was found that the the proposed constitutive modeling can predict the nonlinear stress-strain and the time-dependent behavior of the material. As an approximation method, a pseudo-elastic theory using the J-integral concept, assuming that the material is a time-independent large deformation elastic material, was also developed and compared with the time-dependent fracture theory. For PVC. the predicted fracture toughness is $1.2{\pm}0.41$ and $1.5{\pm}0.23\;kN/m$ for the time-dependent theory and the pseudo-elastic theory, respectively. The methods should be of value in quantifying fracture properties of soft biological tissues. In Part II, an application of the developed method to a biological soft tissue was made by using bovine humeral articular cartilage.

  • PDF

Numerical analysis of vertical drains accelerated consolidation considering combined soil disturbance and visco-plastic behaviour

  • Azari, Babak;Fatahi, Behzad;Khabbaz, Hadi
    • Geomechanics and Engineering
    • /
    • 제8권2호
    • /
    • pp.187-220
    • /
    • 2015
  • Soil disturbance induced by installation of mandrel driven vertical drains decreases the in situ horizontal hydraulic conductivity of the soil in the vicinity of the drains, decelerating the consolidation rate. According to available literature, several different profiles for the hydraulic conductivity variation with the radial distance from the vertical drain, influencing the excess pore water pressure dissipation rate, have been identified. In addition, it is well known that the visco-plastic properties of the soil also influence the excess pore water pressure dissipation rate and consequently the settlement rate. In this study, a numerical solution adopting an elastic visco-plastic model with nonlinear creep function incorporated in the consolidation equations has been developed to investigate the effects of disturbed zone properties on the time dependent behaviour of soft soil deposits improved with vertical drains and preloading. The employed elastic visco-plastic model is based on the framework of the modified Cam-Clay model capturing soil creep during excess pore water pressure dissipation. Besides, nonlinear variations of creep coefficient with stress and time and permeability variations during the consolidation process are considered. The predicted results have been compared with V$\ddot{a}$sby test fill measurements. According to the results, different variations of the hydraulic conductivity profile in the disturbed zone result in varying excess pore water pressure dissipation rate and consequently varying the effective vertical stresses in the soil profile. Thus, the creep coefficient and the creep strain limit are notably influenced resulting in significant changes in the predicted settlement rate.

이방성 전도 필름을 이용한 플립칩 패키지의 열피로 수명 예측 및 강건 설계 (Robust Design and Thermal Fatigue Life Prediction of Anisotropic Conductive Film Flip Chip Package)

  • 남현욱
    • 대한기계학회논문집A
    • /
    • 제28권9호
    • /
    • pp.1408-1414
    • /
    • 2004
  • The use of flip-chip technology has many advantages over other approaches for high-density electronic packaging. ACF (anisotropic conductive film) is one of the major flip-chip technologies, which has short chip-to-chip interconnection length, high productivity, and miniaturization of package. In this study, thermal fatigue lift of ACF bonding flip-chip package has been predicted. Elastic and thermal properties of ACF were measured by using DMA and TMA. Temperature dependent nonlinear hi-thermal analysis was conducted and the result was compared with Moire interferometer experiment. Calculated displacement field was well matched with experimental result. Thermal fatigue analysis was also conducted. The maximum shear strain occurs at the outmost located bump. Shear stress-strain curve was obtained to calculate fatigue life. Fatigue model for electronic adhesives was used to predict thermal fatigue life of ACF bonding flip-chip packaging. DOE (Design of Experiment) technique was used to find important design factors. The results show that PCB CTE (Coefficient of Thermal Expansion) and elastic modulus of ACF material are important material parameters. And as important design parameters, chip width, bump pitch and bump width were chose. 2$^{nd}$ DOE was conducted to obtain RSM equation far the choose 3 design parameter. The coefficient of determination ($R^2$) for the calculated RSM equation is 0.99934. Optimum design is conducted using the RSM equation. MMFD (Modified Method for feasible Direction) algorithm is used to optimum design. The optimum value for chip width, bump pitch and bump width were 7.87mm, 430$\mu$m, and 78$\mu$m, respectively. Approximately, 1400 cycles have been expected under optimum conditions. Reliability analysis was conducted to find out guideline for control range of design parameter. Sigma value was calculated with changing standard deviation of design variable. To acquire 6 sigma level thermal fatigue reliability, the Std. Deviation of design parameter should be controlled within 3% of average value.

지반-구조물 상호작용해석시 동적지반특성의 평가 및 적용 (Evaluation and Application of Dynamic Soil Properties for SSI Analysis)

  • 이명재;신종호;전준수
    • 대한토목학회논문집
    • /
    • 제10권2호
    • /
    • pp.103-112
    • /
    • 1990
  • 본 연구는 내진설계시 많은 불확실성을 내포하는 지반의 거동특성을 규명하고, 적용대상지반의 확충 및 경제성 제고를 위하여 토사지반의 동적지반특성 평가 및 지반-구조물 거동 특성을 고찰하였다. 예제해석은 토사지반에 원전 containment 구조물이 설치된 경우를 가상하여 지진하중에 대한 지반-구조물 시스템의 거동을 반무한체해석과 유한요소해석으로 분석하였다. 이는 토사지반에 원전이 건설될 경우에 고려해야 할 안정성 및 경제성 분석의 일환으로 수행되었으며, 토사지반의 큰 비선형거동을 정확하게 해석에 반영하기 위한 해석 software와 지반입력 data의 합리적인 평가방안 등을 예제해석을 통하여 분석하였다. 예제해석결과를 종합해 볼 때 토사지반의 동적거동의 정확한 분석을 위하여 비선형 유한요소해석은 Seed & Idriss 모델이, 선형 유한요소해석은 지진하중에 대한 1차원 지반거동시 변형율에서의 동적지반특성을 이용한 방법이, 반무한체해석은 정적하중시 변형율에서의 동적지반특성을 이용한 방법이 가장 합리적으로 동적지반특성을 평가하는 것으로 추천할 수 있다.

  • PDF

가정변형률 솔리드 요소를 이용한 복합재 샌드위치 평판의 저속충격 해석 (Analysis of low-velocity impact on composite sandwich panels using an assumed strain solid element)

  • 박정;박훈철;윤광준;구남서;이재화
    • 한국항공우주학회지
    • /
    • 제30권7호
    • /
    • pp.44-50
    • /
    • 2002
  • 본 논문에서는 저속충격을 받는 복합재 샌드위치 평판의 동적 거동에 관한 연구를 수행하였다. 접촉 하중의 산출을 위해서 Hertz의 접촉법칙을 새로이 수정하는 방법을 제시했는데, 지수를 줄이는 방법과 심재의 두께방향의 탄성계수의 값을 줄여 등가 탄성계수를 계산하는 방법을 사용했다. 접촉하중을 산출하는 비선형 방정식은 Newton-Raphson 방법을 사용하여 계산하였고, 시간적분에는 Newmark-beta 방법을 사용하였다. 이러한 기법과 18절점 가정변형률 솔리드 요소를 적용하여 저속충격 해석용 유한요소 프로그램을 개발했다. 이 프로그램을 이용하여 다양한 복합재 샌드위치 평판의 저속충격에 대한 동적 거동을 해석하였다. 제안된 접촉법칙을 적용한 해석결과를 분석하여 볼 때, 대부분의 경우에서 접촉하중과 접촉시간이 실험결과와 대체로 일치함을 확인하였다.

Energy-based design base shear for RC frames considering global failure mechanism and reduced hysteretic behavior

  • Merter, Onur;Ucar, Taner
    • Structural Engineering and Mechanics
    • /
    • 제63권1호
    • /
    • pp.23-35
    • /
    • 2017
  • A nonlinear static procedure considering work-energy principle and global failure mechanism to estimate base shears of reinforced concrete (RC) frame-type structures is presented. The relative energy equation comprising of elastic vibrational energy, plastic strain energy and seismic input energy is obtained. The input energy is modified with a factor depending on damping ratio and ductility, and the energy that contributes to damage is obtained. The plastic energy is decreased with a factor to consider the reduced hysteretic behavior of RC members. Given the pre-selected failure mechanism, the modified energy balance equality is written using various approximations for modification factors of input energy and plastic energy in scientific literature. External work done by the design lateral forces distributed to story levels in accordance with Turkish Seismic Design Code is calculated considering the target plastic drift. Equating the plastic energy obtained from energy balance to external work done by the equivalent inertia forces considering, a total of 16 energy-based base shears for each frame are derived considering different combinations of modification factors. Ductility related parameters of modification factors are determined from pushover analysis. Relative input energy of multi degree of freedom (MDOF) system is approximated by using the modal-energy-decomposition approach. Energy-based design base shears are compared with those obtained from nonlinear time history (NLTH) analysis using recorded accelerograms. It is found that some of the energy-based base shears are in reasonable agreement with the mean base shear obtained from NLTH analysis.

PRaFULL: A method for the analysis of piled raft foundation under lateral load

  • Stacul, Stefano;Squeglia, Nunziante;Russo, Gianpiero
    • Geomechanics and Engineering
    • /
    • 제20권5호
    • /
    • pp.433-445
    • /
    • 2020
  • A new code, called PRaFULL (Piled Raft Foundation Under Lateral Load), was developed for the analysis of laterally loaded Combined Pile Raft Foundation (CPRF). The proposed code considers the contribution offered by the raft-soil contact and the interactions between all the CPRF system components. The nonlinear behaviour of the reinforced concrete pile and the soil are accounted. As shallower soil layers are of great relevance in the lateral response of a pile foundation, PRaFULL includes the possibility to consider layered soil profiles with appropriate properties. The shadowing effect on the ultimate soil pressure is accounted, when dealing with pile groups, as proposed by the Strain Wedge Model. PRaFULL BEM code obviously requires less computational resources compared to FEM (Finite Element Method) or FDM (Finite Difference Method) codes. The proposed code was validated in the linear elastic range by comparisons with the code APRAF (Analysis of Piled Raft Foundations). The reliability of the procedure to predict piled raft performance was then verified in nonlinear range by comparisons with both centrifuge tests and computer code PRAB.

흙의 변형 거동 예측을 위한 비선형 이방성 모델의 개발과 적용 (Numerical Analysis of Anisotropic Soil Deformation by the Nonlinear Anisotropic Model)

  • 정충기;정영훈;윤충구
    • 한국지반공학회논문집
    • /
    • 제18권5호
    • /
    • pp.237-249
    • /
    • 2002
  • 파괴 이전 상태의 낮은 변형률 수준 하에서 정확한 지반 변형 거동 예측을 위해서는 흙의 비선형성과 이방성을 함께 고려해야 한다. 본 연구에서는 Ramberg-Osgood 식을 이용하여 흙의 비선형성을 모사하고 직교이방성을 도입하여 흙의 이방성을 구현한 새로운 모델을 개발하였다. 새롭게 개발한 비선형 이방성 모델을 여러 비교 대상 모델과 함께 간단한 경계치 문제와 원형 기초 문제에 적용하였다. 그 결과 이방성을 나타내는 탄성계수비가 체적 계수, 정지 토압계수, 그리고 유효 응력 경로에 큰 영향을 미치는 사실을 알아내었으며, 원형 기초 해석을 통해 초기 지중 응력 상태를 고려한 흙의 비선형성이 지표 침하에 큰 영향을 줌을 알 수 있었다.