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Abstract

A time-dependent large deformation fracture theory is developed
for application to soft biological tissues. The theory uses the
quasilinear viscoelastic theory of Fung, and particularizes it to
constitutive assumptions on polyvinyl-chloride (PVC) (Part D

and cartilage (Part I1). This constitutive theory is used in a

general viscoelastic theory by Christensen and Naghdi and an
energy balance to develop an expression for the fracture
toughness of the materials. Experimental methods are developed
for measuring the required constitutive parameters and fracture
data for the materials. Elastic stress and reduced relaxation
functions were determined using tensile and shear tests at high
loading rates with rise times of 25 - 30 msec, and test times of
150 sec. The developed method was validated, using an
engineering material, PVC to separate the error in the testing
method from the inherent variation of the biological tissues. It
was found that the the proposed constitutive modeling can predict
the nonlinear stress-strain and the time-dependent behavior of the
material. As an approximation method, a pseudo-elastic theory
using the J-integral concept, assuming that the material is a time-
independent large deformation elastic material, was also
developed and compared with the time-dependent fracture
theory. For PVC, the predicted fracture toughness is 1.2 * 0.41
and 1.5 * 0.23 kN/m for the time-dependent theory and the
pseudo-elastic theory, respectively. The methods should be of
value in quantifying fracture properties of soft biological tissues.
In Part II, an application of the developed method to a biological
soft tissue was made by using bovine humeral articular cartilage.

1. Introduction

Only a limited number of studies have been made to
measure fracture properties of biological materials. Brittle and
stiff materials such as wood, sea shells, bones (Behri, 1984),
etc. were readily measured using the stress-intensity, K, or the
energy release rate, G, because of their similar characteristics to
engineering materials such as metals. However, for soft tissues,
only a few materials have been studied for their fracture behavior
(Broom, 1984, 1986; Purslow, 1980, 1983a, 1983b; Chin-
Purcell, 1991). Particularly in the field of orthopaedics, the
breakdown of musculo-skeletal soft tissues such as cartilage,
meniscus, ligaments, and tendon appears to be often involved in
the desease process or injury. Understanding the fracture
behavior of these soft tissues appears to be important in
understanding the pathophysiology of the tissues. -

Recently Chin-Purcell (1991) introduced the methods of
fracture mechanics to quantify fracture toughness of cainine
patellar cartilage. Although the approach seemed appropriate, the
particular application of the method she used was limited because
she assumed small deformation elastic behavior for the tissue in
order to calculate the fracture parameter from the experimental
fracture data. In reality, cartilage is known to be highly time
dependent and, because of its high compliance, likely undergoes
large deformations. There are questions with the absolute
magnitude of the fracture parameters for cartilage calculated by
Chin-Purcell because she ignored these nonlinearities.

The specific objectives of the present research were to:
(1) establish a nonlinear viscoelastic model which can describe
the constitutive behavior of highty deformable time-dependent
biological soft tissues; (2) develop a methodology of fracture
measurement for soft tissues on the basis of this large
deformation, viscoelastic constitutive theory; (3) measure the
material parameters necessary to apply this theory to the tissues,
(4) verify the methods, both theoretical and experimental,
necessary to deduce fracture toughness for the tissue using these
methods, and (5) use the theories and methods to assess the
effect of large deformations and time dependency on the
predicted fracture parameter for a soft tissue.

A single phase viscoelastic model was used as an
appropriate constitutive model to account for the large
deformations as well as the time-dependent behavior of the
tissues. For the application to plane stress analysis of thin
striplike specimens, the quasilinear theory of viscoelasticity
(Fung, 1972, 1981) was generalized to a three-dimensional form
by using the general thermodynamic consideration of a
viscoelastic medium (Christensen, 1971). As a fracture
measurement for viscoelastic materials, the fracture surface
energy of tissue is defined based on an energy balance (Knauss,
1970, 1971; Schapery, 1975), the terms of which can be
determined by solution of an appropriate boundary value problem
and experimental measurements. The proposed method of
fracture measurement for soft tissues consists of theoretical
modeling, numerical solution methods, and experimental
measurement of the material's pre-failure and fracture properties.
It is important to assess the validity and the accuracy of the
overall procedure as well at each stage of the test procedures.
However, the direct use of biological tissues for this purpose

appears to be inadequate because there are considerable variations
between individual specimens. In order to validate the proposed
fracture measurement method, an engineering material, PVC,
which has a similar deformational and fracture behavior to soft
biological tissues was chosen and tested at each stage of the
experimental and numerical procedures, because most of
biological tissues have significant natural variation between the
specimens.

Methods
2. Theory
2.1. Constitutive Modeling of Soft Biological Tissues
Assuming soft biological tissues to be an isotropic and
compressible hyper-viscoelastic material, a nonlinear viscoelastic
constitutive theory was developed. Although the theory has
originally been developed for the materials which can be assumed
to be a single phase solid, it could be extended to a biphasic
formulation by utilizing the model in describing of the flow-
independent viscoelasticity of the tissue matrix alone, as
proposed in the poroviscoelastic models (Mak, 1986; Huyghe,
1991). The theory is a combination of Fung's quasi-linear
viscoelastic theory (1972) and the general nonlinear viscoelastic
theory of Christensen and Naghdi (1967; or Christensen, 1968,
1971; Coleman, 1964a, b). The resulting expression is similar
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to the recent model proposed by Huyghe (1991), but differs in
that i) the stored strain energy is history dependent in our theory,
allowing a dissipation term to be computed, ii) the reduced
relaxation function is defined to be a fourth order tensor.

a) Generalized quasilinear viscoelastic theory

From the general thermodynamic consideration for
nonlinear viscoelastic media (Christensen, 1967), the following
local energy balance and entropy inequality are assumed,

pr - pld + TS +T$)+ 0;d;j - Qi; =0 : energy balance )

pTS -pr +Qi;- Qi(T;/T)=0 : entropy inequality 2)

where p is the mass density at time t, r is the heat supply
function per unit mass, A is the Helmholtz free energy per unit
mass, T is the absolute temperature, S is the entropy per unit
mass, Q; are the Cartesian components of the heat flux vector
measured per unit area per unit time, 6j; is the Cauchy stress,
and d;; is the velocity gradient,

2di = viy + vji, with vi(D)=%; (Xg,T), vi=vi(t) (3)
A superimposed dot is used for differentiating with respect to t,
holding the reference configuration coordinate Xk fixed. For an
isothermal condition (T, T,; = 0), combining the two gives

-pA +05d; 20 @)

At this point, we diverge from Christensen and Naghdi
(1967) in the assumed form of the stored strain energy. It was
wished to have a strain energy function consistent with Fung's
quasi linear theory.

In viscoelastic materials, input work is intantaneously
stored but then relaxes as time elapses. In other words, the work
input at the present time t is stored completely in the body, while
the work previously input at any time T ( where 1<t ) has been
somewhat dissipated depending upon how far the time 1 is from
the present time t. For a mathematical description of such a
dissipation behavior, an appropriate weight function is
introduced, assuming that the amount of stored energy can be
expressed as a function of the entire history of input work. If
the superposition principle is valid, such a dissipation behavior
of the material can be written as a Stieltjes integral for the
arbitrary input work history:

t
PoA(t)=f gt-W(n) dn, where g(0) = 1

- &)
where p, is the density in the initial configuration and thus poA
and W are the strain energy and input work per unit volume of
the material in the initial state, respectively. The function g(t) is a
normalized weight function describing the energy dissipation
behavior of the material, similar to the classical representation
theorem of the viscoelastic stress-strain relation.
Recalling dW = SKL dEKL, it can be rewritten

t
dE;
PoA() = f (t - DS g;(“) an
- o ©)
The stress in this expression is assumed to be given by a
generalized form of Fung's quasilinear viscoelastic constitutive
equation, i.e.:

t

GrLmn(t- 1) w dt

Ske (B0 =f

oo

)

where Ggpmn(t) is the generalized reduced relaxation function of
the material. S°® is a non-physical variable, the elastic stress,
i.e., the stress that is reached instantaneously when the strains
are assumed to be suddenly increased from O to the present state
of strain E(t). It is important to note in this formulation that the
reduced relaxtion function Ggi mn(t) is a function of time t only,
while the elastic stress tensor S° is a function of strain only. :

" Substituting this sress-strain relationship into equation (6)
leadsto -

Sy

oijdij -pA() =| (1) - pﬂ I
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For mathematical simplicity, it is now assumed that
*
g(t-n) GRLMN(THT) = G mn(-T, t-1) ©)
The stored strain energy density expression then becomes
t

n
* 9SS (D) OBk ()
PoAt) = f G (M%) ’g’; Tdt dn

-oa

ey

(10)

This expression represents the strain energy density function

associated with the generalized quasilinear viscoelastic

constitutive equation in equation (7). o
By taking the time derivative of this, then from Leibnitz's

rule, we have

t ¢

Po A(t) =Exr (1) f Grmn(t-5 0) 35_1\5»;(_11 dt

t
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This can be thought of as the initial constitutive assumption for
our theory. Substituting this into the entropy inequality in

equation (3) and using ExL = dj XjLxik, it is

obtained

t e
GIZLMN(t"C’ 0) a—s—bgﬁ—(rl dt xjx XjLi dj

t
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For an arbitrary deformation history, for equation (12) to be
satisfied it is necessary that the coefficient of d;; vanish, giving

t e
Gij(t) =p£ f GIELMN(t‘Tv 0) —aSJai@ dt|xix XL
0

h 13)
which leaves equation (12) as
pA 20,
t
" ¢(D) ke (m)
ithA=- L 95% gt OSMN(® IEKL(D o
with A = oo IEIGK‘-W("T’W) 9t ] an dtdn
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(14

This last relationship states the result that th¢ rate of dissipation
of energy must bé nonnegative. Using the rélation between the
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Kirchhoff stress and the Cauchy stress tensor,

Sk (t) =%3 XL XK,i Gi(t)

(15)
The constitutive equation in (13) can be rewritten in the sense of
the Kirchhoff stress as;

t f—
Sk(t) = f Grimn(t-D ?SL%[TE_(T)J_ da

ISYNE(D] 4
a1
(16)

t
= SHn(0%) Grimn(®) + f Grpmn(t-1)

0

with the assumption that Gy pn(t-7) = G;;LMN(t-‘C, 0).

The possible existence of the resulting generalized expression
(16) was previously suggested by Fung (1984). Comparing this
result with the one-dimensional constitutive expression:

t
S(t) = [ G(t-1) $°(1) dt

-o0
t

G(t-v) $°(7) dt

=8°%0%) G(t) + f ., an

0
one can realize that the proposed expression is a general tensorial
form of the quasilinear viscoelastic constitutive law.

If the material is assumed to be isotropic, it will have only
two independent components. Substituting the most general
expression for a 4th order isotropic tensor:

Grimn(®) = MO ke S + WO{Bxdn + Sxndim)

(18)
into equation (16),

! t
SkL(®) =f At-1) Snés_lg"t(_q:). dt +2 f (- BSSLT(T) &

-0 o0

19

where 8y is the Kronecker delta function, and A(t) and pu(t) are
independent relaxation functions for the material. Since the
expression above is written in terms of the elastic responses

SieCL(t) instead of strains Exy (t) , the two relaxation functions A(t)
and p(t) are only mathematically analogous to the Lamé constant
in the theory of elasticity. The relaxation function in shear, j(t),
of articular cartilage has been measured by several investigators
(Zhu, 1986; Sprit, 1989). In a recent study by Huyghe (1991),
it was assumed that the stress Skp is split up into two
components, one resulting from elastic volume change of the

tissue (S, the -other from viscoelastic shape change (S° );
Sk1 = SgL(E) + SgL(E®), 1) (20)

and that the viscoelastic component S°; is described in a
spectral form of quasilinear viscoelasticity as follows:

G(t-T) d_SeKI._a[_E@]_ dt

It 21)

t
Sk EW), v) = f

—co

It is worth while to note that if the function A(t) in equation (19)
is assumed to a constant, then the first term of the equation
becomes a function of strain only. Thus one may see that the
Huyghe's constitutive form in equation (20) is a special case of
equation (19).

b) Form of the elastic response S¢ f

- Most of biological soft tissues show a gradual stiffening
behavior as the strain increases and thus in general have a
nonlinear stress-strain relationship. Using the most general strain

al;g%y expression for nonlinear elastic materials of Rivlin
),

W= Ci(L-3) (L-3)¥(h-1), (22
with the hyper-elasticity assumption;

oW  dW
ss=L(+
i =7 (3E; * 3K, 3
the elastic stress, Sfj is expressed. W is the elastic strain energy

density function, Cy is the coefficient for gach teljrn,.and y, I,
and 15 are the first, the second, and the third strain invarjants,
respectively, given by;

ﬁ 5 +?»§ = 2(E; +En+Es)+3,

)

I =

A2 40T AT |
4 (Ei1 + Eg + Ea3 + E11Egp + EgoBa3 + EssEyy ) +3
( 2E11+1 ) ( 2E22+1 ) ( 2E33+1 )

I

1

>

L = MA3AM= (2En+1) <2E22+1(>25‘)2E33+1>'

In the expression, A's are extension ratios, the deformed length
of a line element over its initial length. E's are the principal
strains in the sense of Green and St. Venant (or Lagrangian)
whereas

E;i = Ly Xiz -1), where i=1,2,3, but nosummation index.
g (25)
In the expression above, material incompressibility requires that
13 = 1, i‘e.,
AMAAy =1 26)
It is important to note that the strain-energy density function, W,
in the equations above is the “elastic” strain energy density
representing the amount of the stored energy when the body is
subjected to elastic (very high strain rate} defcm;atxon. The
general expression of the strain energy density function, oA, for
large deformation viscoelastic media is given by equation (8) in
the previous section. :

c¢) Form of reduced relaxation functions

Direct measurement of A(t) for soft biological tissues is
very difficult, because this parametric function implicitly
represents the dilatation contribution to the material's
viscoelasticity and since most soft biological tissues are mostly
water, they are nearly incompressible. The function A(t) can
however be approximated by using two other measurable
relaxation behaviors (the uniaxial tensile reduced relaxation
function G(t) and the shear relaxation function p(t) ), under the
assumption that the material is isotropic. Since in unjaxial
tension tests, the specimen can be assumed to satisfy the
condition that the lateral stress components Spa(t) = S33(t) = 0
and the strains Epy(t) = Esa(t) (thus S%; = S%33 as well ), A1)
can be expressed in terms of the tensile relaxation function G(t)
and the shear relaxation function p(t) from equation (19).
Applying the Laplace transform to the result gives

- )2
Ges) = 3 A(s)[(s) + 2[(s)
A(s) + f(s) Q7
and in turn, _ -
Ts) = G(s)i(s) -EM(SL
31(s) - G(s) (28)

In order to measure the two independent relaxation
behaviors G(t) and pu(t) of a specimen, we perform sequentially a
tensile and a shear test on the same specimen. The acquired data
has been numerically processed using the generalized reduced
relaxation function in the following form:

G(t)=B +(1-B)exp(-AtC) 29
The constant parameters A, B, and C for the two
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relaxation functions G(t) and yu(t) are determined, respectively,
by using a nonlinear least-square curve fitting. In the equation,
the constant B characterizes the total relaxation of the material,
and therefore the smaller the B, the more pronounced the
viscoelastic properties will be, while the constants A and C
determine the shape of the relaxation curve. The two resulting
curves for G(t) and p(t) will be used for determining A(t).

2.2. Crack Propagation in Viscoelastic Media

The goal of the present study is to provide a more
accurate value for fracture toughness for soft tissues by taking
into account both large strain as well as time and history-
dependent deformation behavior of the material. Since the J
integral is not a widely accepted fracture parameter for
viscoelastic materials, an alternative concept, the fracture energy,
is selected as a fracture measure and is computed based on an
energy balance.

In dealing with the problem proposed, similar to other
physical or mechanical cases, continuum models are utilized.
Aside from the regular field equations such as equations of
motion and kinematic relations, the system must at all times obey
the fundamental principle of the global conservation of energy
during the crack propagation. The rate of work done by external
forces and all energies that enter or leave the material body
containing cracks per unit time must equal the time rate of change
of the internal and kinetic energies plus the energies associated
with the formation of cracks, (assuming all other energy
exchanges to be negligible). On this basis, the global
conservation of energy per unit time for a cracking viscoelastic
medium containing 'm' cracks at any time t becomes

m .
W) = EQ)+ DO + KO + Y, &) ,
n=] 30)

where W(t) is the mechanical work done by external loads,

EXt) is the stored elastic strain energy of the uncracked portion of

the medium, D(t) is the energy dissipated by the uncracked

portion of the medium, K(t) is the kinetic energy of the

uncracked medium, and &q(t) is the energy absorbed by the n-th

crack developed in the medium.

For any volume V of a viscoelastic medium bounded by

closed surfaces § (figure 1), all the parameters in (30) can be
expressed in elementary parameters as:

W) = nj Gyj aatﬂ ds
s - 5 3y
E@) = f poA dV
v (32)
and D(t) =f A dV
v (33)

where Sy is the surface over the failure zone at the crack tip
region, and p, is the uniform initial density of the material, A is
specific stored strain energy, A is rate of energy dissipation per
unit volume, n; are components of the unit outward normals to S

If the inertia contribution to this energy balance equation
is assumed to be neglected, the failure zone is small relative to the
crack and body, and a single crack is assumed, equation (30)
can be rewritten as;

fpoA dV+fAdV-f ni()'ij%?-ds
14 v 5 -§

where (1) is the rate of energy absorption in the failure zone.
Equation

= &
(34)

AdA A1LE 95/5

o8

Figure 3-1 Two dimensional SEN crack showing the vicinity of a crack

(34) can also be written in the following form by using the
cohesive stress G, and the opening displacement at the crack tip
cohesive zone Au; ;

) ou; ¢ Ay
IpoA dV+[AdV-f nicij?]ds =-j G at’dx
v 1 §-5¢ 0

35)

Alternatively,

& =2 vb(H® (36)
where b(t) and ¢(t) are the speciemen's thickness and the crack
speed, respectively. 7 is the fracture energy which is absorbed
by the failure zone. A fracture criterion of the form (36) has been
proposed by Knauss and coworkers (1970a, 1970b, 1971).
Similar local energy balance criterion have also been considered
by Schapery (1975a, 1975b). From equations (33)-(36), the
fracture energy vy can be determined if the crack propagation

speed (1), W, A, and A are known. The rate functions for
stored and dissipated energy are given by equations (8) and (14),
respectively. These equations constitute the proposed fracture
theory. :

2.3. Numerical solution methods

The stress-strain field and the energy terms in the theory
for actual specimen configurations are determined numerically.
Based on the minimization of potential energy principle
(Christensen, 1971), a nonlinear finite element code has been
written for the plane stress analysis of a large deformation visco-
elastic medium. The numerical procedures previously developed
for large strain problems (Lindley, 1971) was largely employed
in the present finite element program with some modifications in
order to consider the time- dependence of the problem. The
program was written in the manner that each nodal point of a
specimen is considered in turn and moved to a position which
minimizes the total energy of the specimen. The numerical
solutions are obtained using the super computer Cray-XMP.

3. Application to PVC

The stress-strain curves and the relaxation behavior at
high strain rates of uncross-linked PVC were measured through
uniaxial tensile and simple shear tests. Based on the quasilinear
viscoelastic formulation discussed earlier, the constitutive
parameters, that is, the elastic stress and the reduced relaxation
functions, of PVC were determined. Comparing the
experimental stress and strain at various loading rates with the
theoretically predicted values, the proposed constitutive theory
was validated. The accuracy and sensitivity of the experimental
methods were also assessed by performing the tests repeatedly
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with difterent sizes of testpieces. 'The constitutive material
properties found were used for calculation of the material's
fracture property, the fracture energy here, in conjunction with
the proposed time-dependent fracture theory.

3.1. Specimens

The PVC specimens used in the present validation
procedures were prepared from medical gloves (Brand name: B-
D Tru-Touch, Bector-Dickinson Co.). The material was
selected because it showed a very similar overall deformational
and fracture behavior with our object material, articular cartilage.
It is highly viscoelastic as well as very compliant with the
maximum recoverable strain of ~100% and thus modeled as a
quasilinear viscoelastic medium. Cracks in the PVC grow in a
relatively stable manner from a moderate low strain level (about
30 - 40 percent). To measure the viscoelasticity of the material,
instead of the conventional dumbbell configuration, a rectangular
strip-like shape of the secimens ranging in section dimensions of
15-20mmx 5- 15 mm x 0.1 - 0.15 mm was used. The
dimensions of the testpieces were intentionally selected in a
comparable size of cartilage specimens for the consistency of
testing (i.e., Parts [ & IT). For the fracture tests, single edged
notched (SEN) specimens (10mm x 10 mm x 0.15 - 0.25 mm)
with the notch depth of 1 mm were used. The molecular
structure of the PVC was confirmed by a simple experiment
checking the material solubility in NMP(methyl 2-pyrrolidinone)
and Acetone. However, neither the specific recipe nor the
treatment for processing of this particular PVC is available.
These information are currently under protection by the
manufacturer,

3.2. Experimental Methods

In order to measure the elastic stress-strain curve as well
as the relaxation behavior of the material in each loading mode,
the specimens were tested under uniaxial tensile and simple shear
loading on an MTS test machine with various strain rates. Both
tests are basically displacement-control relaxation tests consisting
of two different phases, a constant-rate ramp displacement phase
and a fixed displacement phase. A typical force response for a
transient displacement in relaxation tests is shown in the figure.
In reducing data, the relaxation curve was extrapolated as shown
in the figure. From the force-displacement and force-time data
from each phase, the material's elastic stress-strain relation
(Phase I) and reduced relaxation functions (Phase II) were
obtained, respectively.

The displacement in the tests was applied by moving the
test machine cross-head, while the force was measured by a
separate force transducer (+500 gms) due to the smallness of its
magnitude. Several different strain rates were tested to assess the
error of the experimental data. For the data acquisition of the
tests, two different time scales were employed. For the first
Phase (t < t,), the data were collected at every 0.002 seconds to
acquire accurate elastic stress-strain data; thereafter (t 2 t;) the
data were collected at every 0.3 seconds until 150 seconds to
investigate the specimen's stress-relaxation. Considering the
definition of the elastic response in the quasilinear viscoelastic
theory, measurement of the material's elastic stress-strain
relationship must be conducted in a high strain rate test.
However, the cross-head speeds which are too fast appears to
often result in an undesirable dynamic effect on the test data. For
the present tests, 22/sec (the equivalent MTS cross-head speed =
33 cm/sec) was used as an optimized strain rate. Due to the
limitation of specimen dimensions, a special device was designed
and installed on a microscope stage to see either specimen
deformation or crack movement in each test. The tests were
conducted after a few cycles of preconditioning stretches with 10
% of the strain prior to being tested, each lasting a duration of 10
- 15 sec, and an equal period of rest between stretches. During
all the tests, the constant temperature condition was maintained
within limits of +0.5°C.

Unlike the shear tests used in previous cartilage studies
(Roth, 1982: Zhu, 1988) the shear relaxation tests in the present
study was performed in the sense of simple shear because the
specimens were prepared from PVC gloves. The shear testing
was conducted in the manner that the MTS actuator was
displaced parallel to the fixed head while maintaining constant

clearence between the two clamps. For comparative purposes, in
the shear tests, the same strain rate was used as that in the
corresponding tensile tests. However, because in simple shear
conditions, the specimen is actually subjected to normal tension
as well as shear deformation, the testing had to be conducted in a
relatively lower strain level (e.g. the maximum cross-head
displacement used was 2 mm for the specimen 2mm long) to
reduce the effect of tension on the specimen's relaxation
behavior.

Because the proposed constitutive equation has a three
dimensional form, it is necessary to define strain components
triaxially as well. In the present study, using a uniaxal tension
testing, three principal strains were approximated. Assuming
that the two lateral strain components are equal and they are
uniquely defined for a given axial strain, the lateral deflection of a
strip-like testpiece was measured. Using a high-speed video
camera (Kodak EktaPro Motion Analyzer, maximum speed for
the split frame = 1000 frames/sec, for the full frame = 6000
frames/sec), the specimen's deformations during the rapid
stretching were continually recorded. For the convenience of
measurement, a number of dots were marked on the specimen
surface and the displacement of each mark was measured. To
create a reference gage length on each testpiece, twenty five dots
were marked in 2 mm intervals with a permanent marker. By
consideration of the strain rate used in the tests, a recording
speed of 250 frames per second was arbitrarily selected. The
obtained visual outputs were carefully analyzed in order to
determine the relation between the lateral deflection and the axial
elongation ot the specimen. At each level of extension, the ratio
of the two strain components of the central rectangular element
surrounded by nine dots were measured on the pictures. It was
assumed that this small portion of the specimen is subjected to
simple tension, and possesses the same principal directions of
strains with those of the whole specimen.

Using single edge notched (SEN) specimens with notch
size 1 mm, the fracture tests were also carried out on the MTS at
a constant rate with crosshead displacement 20 mm, through the
onset point of crack initiation, until the crack propagated through
the width of the specimen. During the tests, the growth of the
crack was continuously monitored as a function of time (or
strain) by using the video-camera. For the convenience of the
crack growth measurement, five dots in 1 mm intervals were
marked on the expected crack path with a permanent pen.

In the test, two separate output devices, the video
recorder and the MTS-load cell system, were employed for
measuring the crack size-time, the load-time, and the load-
deflection data. Therefore, the tests were conducted in the
following manner: 1) By programming the MTS displacement,
the MTS was activated first, (putting in a few seconds of a zero
displacement session before the actual ramp phase starts), 2)
During this standby period yet before the actual MTS cross-head
movement begins, the start button of the video recorder was
pressed. Since the two devices have different lag times, it was
necessary to find the real time. Coordinating the specimen
configuration pictures with the MTS force-displacement-time data
at every time point, the true zero time, when the specimen
actually began to be deformed, was found.

In order to avoid a possible disturbance of the data by the
rapid movement of the MTS actuator, a force transducer was
fixed on the table. For the material testing, the maximun speed
of the displacement was 33 cm/sec followed by a constant
displacement peroid, but for the fracture test, a relatively slower
speed was used (0.4 mm/sec ) for easy detection of the onset
point of crack propagation and crack speed. The load cell was
fed into an A/D converter from a Daytronix signal recording unit
which gives a digital readout of the load in grams and a clock
time in seconds. The computer used in this system was an IBM
PS 1I with data collection program ASYST. The computer was
programmed to turn on the MTS and record the load cell data
with time. The data from the computer and the images from the
video screen were coordinated to determine the critical point at
which the crack began to propagate, and the propagation speed at
each time point.

4. Results and Data Reduction
4.1. Measurement of Constitutive Properties
Elastic response of PVC : A typical elastic stress-strain
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relationship (from the ramp strain increase . . . .
£ . phase) and the -
corresponding strain energy function of the PVC in tension are gﬁ:&g?bmec?mu:son (23), the corresponding elastic stress-strain

shown in figure 2.
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%) By using this expression in a least squares fit of the
STRAIN ENERGY DENSITY IN MPa ° 3.5 3 experimental data of the uniaxial tensile tests, the material
6 (Eqn. (4) ) ° 2 constants were found as C; = 2.93 £ 0.26 MN/m2 and C; =
5 -3.44 + 0.36 MN/m?2 for PVC (the test size, n = 6). It is
Z important to distinguish the use of equation (38) here from the
Gent's original use. Gent et al. (1958) proposed this functional
form as a complete constitutive equation for a time-independent
large deformation material (vulcanized rubber), while in the
present study, the same expression was utilized for describing
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From the experimental results, it was found that the elastic stress-
strain curves of PVC can be expressed by using Gent's (1958)
constitutive form for natural rubbers:

Elastic response of uncrosslinked PVC ( for strain rate

w=c1(11-3)+c21n(%2) -
where C; and C; are material constants to be determined, and
I; and I are the first and second strain invariants, respectively.
During the uniaxial tensile tests, the lateral deflection
cefficient for PVC was also measured. Assuming that the lateral
deflection of a specimen in uniaxial tension is a function of the
axial strain alone with a functional form Ajaeral = (Aaxial)™®, @
relationship between two strain components was established
experimentally. It was found that the ratio of the lateral strain to
the axial strain slightly decreases (in its
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=z
£ investigated by testing at several different levels of MTS cross-
® head speed, ranging from 1 - 400 mm/sec.
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Figure 3 The axial strain vs. the lateral strain in uniaxial tension tests

bsolute value), as the axial extension increases. The coefficient
x was found to be 0.465, which suggests that the volume of the
ipecimen increases slightly, as the specimen was elongated,
secause o < 0.5. But we assume-here that oo = 0.5 for
mathematical simplicity. Then, from that I3 = A; ;A3 =1 and A,

=A, A =.k3.= X“,. the strain energy expression (35) for the
case of uniaxial tension is rewritten as; -

a2
w=c, (A2 -3y + ¢, 1n(__?» +27»)

3 (38)

the elastic part of the stress-strain relationship of a time-
dependent large deformation material, PVC.

‘I'he strain rate sensitivity of the material property was

Significant
reductions in both peak stress and total relaxation were observed
when the lower strain rate was used. It is also observed that all
curves tend asymptotically to a certain value (called the
equilibrium stress) at long times. Due to this material property-
like nature of the long-term stress response, the equilibrium
stress has often been used as a material parameter in many earlier
non-time dependent investigations of cartilage (Kempson, 1972,
1980; Weightman, 1976; Woo, 1976). A significant positive
correlation between the strain rates and the slope of the stress-
strain curves was found.

Reduced relaxation function: Because the true reduced relaxation
function G(t) = S(t)/S(t=0) cannot be obtained experimentally,
the present research experimentally approximates the relaxation
functions of the PVC by using a strain rate of 22 /sec. The
measured reduced relaxation data actually represents the ratio of
the present stress S(t) against the stress at t = 0.03 second, not
against the stress at t = 0. It is meaningful to compare the rise
time t; in this study with that in a previous study. The earlier
work of Woo et al. (1979) defined their experimental reduced
relaxation function as G(t) = S(t)/S(t=0.25 sec.) for bovine
articular cartilage. It is reasonable to expect that the smaller the t;
used, the closer values to the true relaxation behavior of a
material can be achieved.

The two independent measured reduced relaxation
functions, G(t), for simple tension and (t), for shear, were
obtained by normalizing the stress data at t against the stress at t
= 0.03 sec. By using the least square procedures with the
functional form (equation 29), the material constants, A, B, and
C, found to be 1.59 + 0.21, 0.22 + 0.03, and 0.25 + 0.03,
respectively. Using the measured reduced relaxation functions,
G(t) and (t), and equation (28), A(t) can be found, which
implicitly represents the contribution of the specimen volume
change to the material's overall stress-relaxation behavior. As
shown in figure 9, a narrow difference between the tensile
relaxation function G(t) and its shear relaxation function,
2u(t),was found. This implies that the viscoelasticity of the PVC
is mainly due to the change of the specimen shape. Because in
the uniaxial loading condition, two lateral stress components, Sy
and Ss33, in equation (19) can be assumed to be zero and the
strain component, Ej; = E33. From equation (28), if G(t) =
2u(t), A(t) = 0, that is, the contribution of the volumetric
contribution to material's viscoelasticity will be negligible.
Based on this observation, the relation that A(t) = 0 was used in
the numerical process in the present study, to save the
computation time.

4.2. Calculation of Fracture toughness

A typical load-deflection curve and the crack length-time curve
acquired from the SEN tests for PVC is seen in figure 4 and 5,
respectively. The cross mark on the load-deflection curve in
figure 4 denotes the critical point for crack propagation of the
specimen considered.

—3)—
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Figure 4: Typical load-deflection curve for SEN test of PVC

By use of the known material properties and the moving
boundary information related to the change of crack length, the
state of stresses and/or strains over the specimen were calculated
as functions of time, using the finite element program. The rate
of energy stored or dissipated during the fracturing process was
calculated as well, by using the energy equations derived earlier
(equation 29 and 35).
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Figure 5: Crack propagation of SEN PVC test-pieces

As seen in the figure 5, the growth of cracks in the PVC
specimens were stable until the crack length became
approximately 60 - 70 percent of the initial width of the
specimen. However, since the amount of energy for pure crack
propagation is usually small as compared to the total energy of
the system, it was hard to assess fracture energy by using the
values for the initial few second's period showing slow crack
propagation, because of computational errors. The fracture
energy of the PVC specimens was therefore obtained using the
energy rate data at the time points when the crack showed a
relatively rapid propagation, because in these cases the difference
in the energy level of the specimen would be considerable. By
averaging the data for six specimens, the fracture energy, 2y, of
the PVC used was found to be 1.2 + 0.41 kN/m.

Discussions and Conclusions

A fracture theory for time-dependent materials

undergoing large deformation has been developed. A three-
dimensional expression of the quasilinear viscoelastic theory of
Fung (1972, 1981) has been used, based on the thermodynamic
consideration of Naghdi and Christensen (1967) and Fung's
original one-dimensional formulation. A new form of the elastic
component of the constitutive equation for soft biological tissues
has been proposed. Experimental methods for measuring the
material properties at high loading rates have also been
successfully developed. The validity of the theory and methods
is supported by the experiments with PVC. This material is more

homogeneous and isotropic than biological tissues, and, thus, its
use eliminates some of the questions that might arise with
application of the theory to a soft biological tissue. Validation of
the constitutive equation, fracture theory, finite element solution
for the deformation field, and experimental measures of load and
motion was supported by the close agreement between predicted
fracture toughness using these techniques and theory, and the
value calculated by a pseudo-elastic assumption and use of a J-
integral calculation. The accuracy of the approximate method,
the pseudo-elastic ] method, is unknown, but because the two
methods gave fracture toughness values within 25% of each
other, this supports the validity of the methods. Validity of the
methods are also supported by the close agreement between the
predicted and measured stress and strain versus time data at the
slow loading rate, using constitutive data obtained at high loading
rates. The complete method, and the approximate pseudo-elastic
method, should be of value in calculating fracture parameters for
soft biological materials.

Table 1: Material properties and fracture toughness : Uncross-linked PVC
(Bector-Dickinson Co.).

Elastic Stress (MPa) C C2 %
(in the quasi-linear 293 £026 <344 £ 0.36 i
viscoelastic theory) i

. S .

|

Reduced relaxation fct, A B C |

1.59 £ 0.21 0.22 £ 0.03 0.25 £0.03 :

il

— }

Fracture Toughness 2y Je i

(kN/m) 123040 1.540.23 i
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