• 제목/요약/키워드: nonlinear dynamical analysis

검색결과 83건 처리시간 0.026초

Study for the Nonlinear Rolling Motion of Ships in Beam Seas

  • Long, Zhan-Jun;Lee, Seung-Keon;Jeong, Jae-Hun;Lee, Sung-Jong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 한국항해항만학회 2009년도 추계학술대회
    • /
    • pp.239-240
    • /
    • 2009
  • Vessels stability problems need to resolve the nonlinear mathematical models of rolling motion. For nonlinear systems subjected to random excitations, there are very few special cases can obtain the exact solutions. In this paper, the specific differential equations of rolling motion for intact ship considering the restoring and damping moment have researched firstly. Then the partial stochastic linearization method is applied to study the response statistics of nonlinear ship rolling motion in beam seas. The ship rolling nonlinear stochastic differential equation is then solved approximately by keeping the equivalent damping coefficient as a parameter and nonlinear response of the ship is determined in the frequency domain by a linear analysis method finally.

  • PDF

Chaos Analysis of Major Joint Motions for Young Males During Walking (보행시 젊은 남성에 대한 상.하체 주요 관절 운동의 카오스 분석)

  • Park, Jung-Hong;Kim, Kwang-Hoon;Son, Kwon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제31권8호
    • /
    • pp.889-895
    • /
    • 2007
  • Quantifying dynamic stability is important to assessment of falling risk or functional recovery for leg injured people. Human locomotion is complex and known to exhibit nonlinear dynamical behaviors. The purpose of this study is to quantify major joints of the body using chaos analysis during walking. Time series of the chaotic signals show how gait patterns change over time. The gait experiments were carried out for ten young males walking on a motorized treadmill. Joint motions were captured using eight video cameras, and then three dimensional kinematics of the neck and the upper and lower extremities were computed by KWON 3D motion analysis software. The correlation dimension and the largest Lyapunov exponent were calculated from the time series to quantify stabilities of the joints. This study presents a data set of nonlinear dynamic characteristics for eleven joints engaged in normal level walking.

An Observation of the Application of a Magnetic Force to the Bicycle Cushion System and its Nonlinearity (자석 척력의 자전거 쿠션장치 적용 및 비선형성 고찰)

  • Yun, Seong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • 제17권1호
    • /
    • pp.42-47
    • /
    • 2018
  • This paper describes the dynamical behavior of the bicycle and its nonlinear effect when magnetic repulsive forces are applied to the bicycle cushion system. A finite-element method was used to obtain its reliabilities by comparing the experimental and numerical values and select the proper magnet sizes. The Equivalent spring stiffness values were evaluated in terms of both linear and nonlinear approximations, where the nonlinear effect was specifically investigated for the ride comfort. The corresponding equations of linear and nonlinear motion were derived for the numerical model with three degrees of freedom. Dynamic behaviors were observed when the bicycle ran over a curvilinear road in the form of a sinusoidal curve. The analysis in this paper for the observed nonlinearity of magnetic repulsive forces will be a useful guide to more accurately predict the cushion design for any vehicle system.

Fault Diagnosis of Ball Bearing using Correlation Dimension (상관차원에 의한 볼베어링 고장진단)

  • 김진수;최연선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.979-984
    • /
    • 2004
  • The ball bearing having faults generally shows, nonlinear vibration characteristics. For the effective method of fault diagnosis on bail bearing, non-linear diagnostic methods can be used. In this paper, the correlation dimension analysis based on nonlinear timeseries was applied to diagnose the faults of ball bearing. The correlation dimension analysis shows some Intrinsic information of underlying dynamical systems, and clear the classification of the fault of ball bearing.

  • PDF

New phenomena associated with the nonlinear dynamics and stability of autonomous damped systems under various types of loading

  • Sophianopoulos, Dimitris S.
    • Structural Engineering and Mechanics
    • /
    • 제9권4호
    • /
    • pp.397-416
    • /
    • 2000
  • The present study deals with the nonlinear dynamics and stability of autonomous dissipative either imperfect potential (limit point) systems or perfect (bifurcational) non-potential ones. Through a fully nonlinear dynamic analysis, performed on two simple 2-DOF models corresponding to the classes of systems mentioned above, and with the aid of basic definitions of the theory of nonlinear dynamical systems, new important phenomena are revealed. For the first class of systems a third possibility of postbuckling dynamic response is offered, associated with a point attractor on the prebuckling primary path, while for the second one the new findings are chaos-like (most likely chaotic) motions, consecutive regions of point and periodic attractors, series of global bifurcations and point attractor response of always existing complementary equilibrium configurations, regardless of the value of the nonconservativeness parameter.

Nonlinear Multivariable Analysis of SOI, Precipitation, and Temperature in Fukuoka, Japan

  • Jin, Young-Hoon;Akira, Kawamura;Kenji, Jinno;Ronny, Berndtsson
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 한국수자원학회 2004년도 학술발표회
    • /
    • pp.124-133
    • /
    • 2004
  • Global climate variations are expected to affect local hydro-meteorological variables like precipitation and temperature. The Southern Oscillation (SO) is one of the major driving forces that give impact on regional and local climatic variation. The relationships between SO and local climate variation are, however, characterized by strong nonlinear variation patterns. In this paper, the nonlinear dynamic relationship between the Southern Oscillation Index (SOI), precipitation, and temperature in Fukuoka, Japan, is investigated using by a nonlinear multivariable approach. This approach is based on the joint variation of these variables in the phase space. The joint phase-space variation of SOI, precipitation, and temperature is studied with the primary objective to obtain a better understanding of the dynamical evolution of local hydro-meteorological variables affected by global atmospheric-oceanic phenomena.

  • PDF

Estimating Basin of Attraction for Multi-Basin Processes Using Support Vector Machine

  • Lee, Dae-Won;Lee, Jae-Wook
    • Management Science and Financial Engineering
    • /
    • 제18권1호
    • /
    • pp.49-53
    • /
    • 2012
  • A novel method of transient stability analysis is presented in this paper. The proposed method extracts data points near the basin-of-attraction boundary and then builds a support vector machine (SVM) model learned from the generated data. The constructed SVM classifier has been shown to reduce dramatically the conservativeness of the estimated basin of attraction.

Analysis of Chaos Characterization and Forecasting of Daily Streamflow (일 유량 자료의 카오스 특성 및 예측)

  • Wang, W.J.;Yoo, Y.H.;Lee, M.J.;Bae, Y.H.;Kim, H.S.
    • Journal of Wetlands Research
    • /
    • 제21권3호
    • /
    • pp.236-243
    • /
    • 2019
  • Hydrologic time series has been analyzed and forecasted by using classical linear models. However, there is growing evidence of nonlinear structure in natural phenomena and hydrologic time series associated with their patterns and fluctuations. Therefore, the classical linear techniques for time series analysis and forecasting may not be appropriate for nonlinear processes. Daily streamflow series at St. Johns river near Cocoa, Florida, USA showed an interesting result of a low dimensional, nonlinear dynamical system but daily inflow at Soyang reservoir, South Korea showed stochastic property. Based on the chaotic dynamical characteristic, DVS (deterministic versus stochastic) algorithm is used for short-term forecasting, as well as for exploring the properties of the system. In addition to the use of DVS algorithm, a neural network scheme for the forecasting of the daily streamflow series can be used and the two techniques are compared in this study. As a result, the daily streamflow which has chaotic property showed much more accurate result in short term forecasting than stochastic data.

A Study on Implementation and Interconnection of Chaotic Neuron Circuit (카오스 뉴론회의 구현 및 상호연결에 관한 연구)

  • 이익수;여진경;이경훈;여지환;정호선
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • 제33B권2호
    • /
    • pp.131-139
    • /
    • 1996
  • This paper describes the chaotic neuron model to represent the complicated states of brain and analyzes the dynamical responses of chaotic neuron such as periodic, bifurcation, and chaotic phenomena which are simulated iwth numerical analysis. Next, the chaotic neuron circuit is implemented w ith the analog electronic devices. The transfer function of chaotic neuron is given by summed the linear and nonlinear property. The output function of chaojtic neuron is designed iwth the two cMOS inverters and a feedback resistor. By adjusting the external voltage, the various dynamical properties are demonstrated. In addition, we construt the chaotic neural networks which are composed of the interconnection of chaotic neuroncircuit such as serial, paralle, and layer connection. On the board experiment, we proved the dynamci and chaotic responses which exist in the human brain.

  • PDF

Direct Adaptive Fuzzy Control with State Observer for Unknown Nonlinear Systems (상태 관측기를 이용한 미지의 비선형 시스템의 직접 적응 퍼지 제어)

  • Kim, Hyung-Joong;Hwang, Young-Ho;Kim, Eung-Seok;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 D
    • /
    • pp.2190-2192
    • /
    • 2003
  • In this paper, a state observer based direct adaptive fuzzy controller for unknown nonlinear dynamical system is presented. The adaptive parameters of the direct adaptive fuzzy controller can be tuned by using a projection algorithm on-line based on the Lyapunov synthesis approach. A maximum control is used to guarantee the robustness of system. A stability analysis of the overall adaptive scheme is discussed based on the sense of Lyapunov. The inverted pendulum simulation example shows that proposed control algorithm can be used for the tracking problem of nonlinear system.

  • PDF