• 제목/요약/키워드: nonlinear dynamic system

검색결과 1,476건 처리시간 0.028초

정합조건을 만족하지 않는 불확정 비선형 시스템의 강인 안정화 (Robust stabilization of nonlinear uncertain systems without matching conditions)

  • 주진만;최윤호;박진배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.159-162
    • /
    • 1997
  • This paper describes robust stabilization of nonlinear single-input uncertain systems without matching conditions. We consider nonlinear systems with a vector of unknown constant parameters perturbed about a known value. The approach utilizes the generalized controller canonical form to lump the unmatched uncertainties recursively into the matched ones. This can be achieved via nonlinear coordinate transformations which depend not only on the states of the nonlinear system but also on the control input. Then the dynamic robust control law is derived and the stability result is also presented.

  • PDF

전자력을 받는 외팔보의 비선형진동 (Nonlinear Vibration Analysis of Cantilever Beam Subject to Electromagnetic Force)

  • 최연선;서경석;우영주
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.283-288
    • /
    • 2001
  • The nonlinear vibration of a cantilever beam due to electromagnetic force is studied. The dynamic responses of the beam show various phenomena with the variation of the system parameters, such as jump phenomenon, multiple solutions and the change of the natural frequency. The nonlinear stiffness due to electromagnetic forces which depends on air gap size is measured experimentally. This system was modeled by a single degree of freedom nonlinear dynamic system and solved numerically for the system parameters. The numerical results show good agreements with the experimental observations, which demonstrates the nonlinearity of magnetic force.

  • PDF

Nonlinear numerical analyses of a pile-soil system under sinusoidal bedrock loadings verifying centrifuge model test results

  • Kim, Yong-Seok;Choi, Jung-In
    • Geomechanics and Engineering
    • /
    • 제12권2호
    • /
    • pp.239-255
    • /
    • 2017
  • Various centrifuge model tests on the pile foundations were performed to investigate fundamental characteristics of a pile-soil-foundation system recently, but it is hard to find numerical analysis results of a pile foundation system considering the nonlinear behavior of soil layers due to the dynamic excitations. Numerical analyses for a pile-soil system were carried out to verify the experimental results of centrifuge model tests. Centrifuge model tests were performed at the laboratory applying 1.5 Hz sinusoidal base input motions, and nonlinear numerical analyses were performed utilizing a finite element program of P3DASS in the frequency domain and applying the same input motions with the intensities of 0.05 g~0.38 g. Nonlinear soil properties of soil elements were defined by Ramberg-Osgood soil model for the nonlinear dynamic analyses. Nonlinear numerical analyses with the P3DASS program were helpful to predict the trend of experimental responses of a centrifuge model efficiently, even though there were some difficulties in processing analytical results and to find out unintended deficits in measured experimental data. Also nonlinear soil properties of elements in the system can be estimated adequately using an analytical program to compare them with experimental results.

Dynamic System Analysis of Machine Tool Spindles with Magnet Coupling

  • Kim, Seong-Keol
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제3권4호
    • /
    • pp.87-93
    • /
    • 2002
  • In this study, basic concepts of magnet were introduced, and dynamic characteristics of magnet coupling were explored. Based on these characteristics, it was proposed how to analyze transverse and torsional vibrations of a spindle system with magnet coupling. Proposed theoretical approaches were applied to a precision power transmission system machined for this study, and the transverse and torsional vibrations were simulated. The force on magnet coupling was shown as a form of nonlinear function of the gap and the eccentricity. Also, the form of torque transmitted by magnet coupling was considered as a sinusoidal function. Main spindle connected to a coupling of a follower part was assumed to be a rigid body. Nonlinear partial differential equation was derived to be as a function of angular displacement. By using the equation, torsional vibration analysis of a spindle system with magnet coupling was performed. Free and forced vibration analyses of a spindle system with magnetic coupling were explored by using FEM.

Dynamic Analysis of Effect of Number of Balls on Rotor-Bearing System

  • 황평
    • Tribology and Lubricants
    • /
    • 제29권4호
    • /
    • pp.248-254
    • /
    • 2013
  • This paper presents a numerical model for investigating the structural dynamic response of an unbalanced rotor system supported on deep groove ball bearings. The aim of this work is to develop a numerical model for investigating the effect of the number of balls on the dynamic characteristics of the rotor ball bearing system. The fourth-order Runge-Kutta numerical integration technique has been applied. The results are presented in the form of time displacement responses and frequency spectra. The analysis demonstrates that the model can be used as a tool for predicting the nonlinear dynamic behavior of the rotor ball bearing system under different operating conditions. Moreover, the study may contribute to a further understanding of the nonlinear dynamics of rotor bearing systems.

카오틱 신경망을 이용한 적응제어에 관한 연구 (A study on the Adaptive Neural Controller with Chaotic Neural Networks)

  • Sang Hee Kim;Won Woo Park;Hee Wook Ahn
    • 융합신호처리학회논문지
    • /
    • 제4권3호
    • /
    • pp.41-48
    • /
    • 2003
  • 본 논문은 개선된 카오틱 신경망을 이용한 비선형 시스템의 적응제어에 관한 것이다. 개선된 카오틱 신경망은 기존의 카오틱 신경망을 간략화하며 동적 특성을 강화하기 위하여 제안하였다 또한 새로운 동적 역전파 학습방법을 개발하였다. 제안된 신경회로망은 다변수 시스템의 시스템식별과 신경망 적응제어 시스템에 적용하였다. 제안된 신경망은 비선형 동적시스템에 우수한 적응성을 가지므로 시뮬레이션 결과는 우수한 성능을 보였다.

  • PDF

An alternative portable dynamic positioning system on a barge in short-crested waves using the fuzzy control

  • Fang, Ming-Chung;Lee, Zi-Yi
    • Ocean Systems Engineering
    • /
    • 제5권3호
    • /
    • pp.199-220
    • /
    • 2015
  • The paper described the nonlinear dynamic motion behavior of a barge equipped with the portable outboard Dynamic Positioning(DP) control system in short-crested waves. The DP system based on the fuzzy theory is applied to control the thrusters to optimally adjust the ship position and heading in waves. In addition to the short-crested waves, the current, wind and nonlinear drifting force are also included in the calculations. The time domain simulations for the six degrees of freedom motions of the barge with the DP system are solved by the $4^{th}$ order Runge-Kutta method. The results show that the position and heading deviations are limited within acceptable ranges based on the present control method. When the dynamic positioning missions are needed, the technique of the alternative portable DP system developed here can serve as a practical tool to assist those ships without equipping with the DP facility.

확장 강인 칼만 필터를 이용한 접근 탄도 미사일 추적 시스템 설계 (Design of Incoming Ballistic Missile Tracking Systems Using Extended Robust Kalman Filter)

  • 이현석;나원상;진승희;윤태성;박진배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.188-188
    • /
    • 2000
  • The most important problem in target tracking can be said to be modeling the tracking system correctly. Although the simple linear dynamic equation for this model has used until now, the satisfactory performance could not be obtained owing to uncertainties of the real systems in the case of designing the filters baged on the dynamic equations. In this paper, we propose the extended robust Kalman filter (ERKF) which can be applied to the real target tracking system with the parameter uncertainties. A nonlinear dynamic equation with parameter uncertainties is used to express the uncertain system model mathematically, and a measurement equation is represented by a nonlinear equation to show data from the radar in a Cartesian coordinate frame. To solve the robust nonlinear filtering problem, we derive the extended robust Kalman filter equation using the Krein space approach and sum quadratic constraint. We show the proposed filter has better performance than the existing extended Kalman filter (EKF) via 3-dimensional target tracking example.

  • PDF

비선형 다이나믹 인버전을 이용한 전자식 스로틀 제어 (Nonlinear Dynamic Inversion Based Control for Electronic Throttle)

  • 양인석;송무근;이동익
    • 한국자동차공학회논문집
    • /
    • 제20권2호
    • /
    • pp.8-14
    • /
    • 2012
  • "Throttle-by-Wire" is an electronic throttle system in which mechanical cables and hydraulics are replaced by a fieldbus network, electric motors and sensors. It is crucial for an electronic throttle to design a controller that can offer an accurate and fast reference tracking performance in the presence of nonlinearities, such as friction in the gearbox and "limp-home" nonlinearity. This paper presents a nonlinear dynamic inversion based control algorithm for electronic throttle systems. Using the proposed method, the specified control performance can be achieved by canceling inherent nonlinear characteristics of the electronic throttle system. The control performance is investigated through a set of simulation results.

Nonlinear interaction and dynamic compensators

  • Ishijima, Shintaro;Kojima, Akira
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국제학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.558-561
    • /
    • 1993
  • The main difference between a linear system and a nonlinear system is the existence of direct interactions between input signals. These interactions will be classified into three types, (1) self-interaction among different order terms of control signals, (2) static mutual interactions between the control signals, and (3) dynamic interactions through the coefficient venctor fields of the control variables. In this paper, we will show that interactions of type (2) and (3) can be avoided by applying an appropriate dynamic compensator, while the interaction of type (1) is fatal.

  • PDF