• 제목/요약/키워드: nonlinear dynamic system

검색결과 1,477건 처리시간 0.031초

전력품질 보상장치의 순간전압강하에 관한 연구 (A study on Voltage Sag Detection of Power Quality Compensator)

  • 이재영;이원선;한운동;전희종
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2004년도 전력전자학술대회 논문집(2)
    • /
    • pp.760-763
    • /
    • 2004
  • The recent growth in the use of impactive and nonlinear loads, electronic, and medical devices sensitive to power quality has caused many power quality problems and power supply-and-demand problem. Recently, in power system not only the reliability of the power supply but also the DVR(Dynamic Voltage Restorer), UPS, and APF are being studied more and more. Hence, in this paper, Voltage sag detection algorithm for voltage sag corrector is proposed. Also, simple circuit for the experimental voltage sag is Introduced.

  • PDF

DSP를 기반으로한 DVR의 전압제어기 구현 (Design of Voltage Controller of DVR based on DSP)

  • 이원선;김수곤;임병국;전희종
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2004년도 전력전자학술대회 논문집(2)
    • /
    • pp.566-569
    • /
    • 2004
  • The recent growth in the use of impactive and nonlinear loads, electronic devices sensitive to power quality has caused many power quality problems. Recently, in power system, not only the reliability of the power supply but also the DVR(Dynamic Voltage Restorer) are being studied more and more. The DVR is a series compensator which can instantaneously compensate a voltage variation in supply side, and is a more effective than a existing UPS(Uninterruptible Power Supply) which can be only used in limited range of loads such as single load. Hence, in this paper, a study of inverter side L-C filter output Voltage for DVR is discussed.

  • PDF

ADAPTIVE PI FUZZY CONTROLLER FOR INDUCTION MOTOR USING FEEDBACK LINEARIZING METHOD

  • Motlagh, Muhammad Reza Jahed;Hajatipour, Majid
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.514-518
    • /
    • 2005
  • In this paper an adaptive fuzzy PI controller with feedback linearizing meth od is implemented to controlling flux and torque separately in induction motor. In this paper first decoupling of torque and flux which are outputs to be controlled, is achieved by using feedback linearization methodology. Then for reducing the effect of noise and rejection of disturbance, main part of controller which is adaptive PI fuzzy controller, is designed. Coefficients of PI controller are determined by defined fuzzy rules due to error dynamic. Inputs of fuzzy system are defined sliding surfaces which consist of torque and flux errors. The main contribution of this paper is effect reduction of noise and disturbance on torque and flux which is based on fuzzy logic and nonlinear control. At last the effectiveness of the proposed control scheme in presence of noise and load disturbance is simulated and comprised to applying sliding method. The results verify better effectiveness of the proposed method for effect reduction of noise and disturbance.

  • PDF

Control of Flexible Joint Robot Using Direct Adaptive Neural Networks Controller

  • Lee, In-Yong;Tack, Han-Ho;Lee, Sang-Bae;Park, Boo-Kwi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제1권1호
    • /
    • pp.29-34
    • /
    • 2001
  • This paper is devoted to investigating direct adaptive neural control of nonlinear systems with uncertain or unknown dynamic models. In the direct adaptive neural networks control area, theoretical issues of the existing backpropagation-based adaptive neural networks control schemes. The major contribution is proposing the variable index control approach, which is of great significance in the control field, and applying it to derive new stable robust adaptive neural network control schemes. This new schemes possess inherent robustness to system model uncertainty, which is not required to satisfy any matching condition. To demonstrate the feasibility of the proposed leaning algorithms and direct adaptive neural networks control schemes, intensive computer simulations were conducted based on the flexible joint robot systems and functions.

  • PDF

Neuro-Fuzzy Algorithm for Nuclear Reactor Power Control : Part I

  • Chio, Jung-In;Hah, Yung-Joon
    • 한국지능시스템학회논문지
    • /
    • 제5권3호
    • /
    • pp.52-63
    • /
    • 1995
  • A neuro-fuzzy algorithm is presented for nuclear reactor power control in a pressurized water reactor. Automatic reacotr power control is complicated by the use of control rods because of highly nonlinear dynamics in the axial power shape. Thus, manual shaped controls are usually employed even for the limited capability during the power maneuvers. In an attempt to achieve automatic shape control, a neuro-fuzzy approach is considered because fuzzy algorithms are good at various aspects of operator's knowledge representation while neural networks are efficinet structures capable of learning from experience and adaptation to a changing nuclear core state. In the proposed neuro-fuzzy control scheme, the rule base is formulated based ona multi-input multi-output system and the dynamic back-propagation is used for learning. The neuro-fuzzy powere control algorithm has been tested using simulation fesponses of a Korean standard pressurized water reactor. The results illustrate that the proposed control algorithm would be a parctical strategy for automatic nuclear reactor power control.

  • PDF

유전자 알고리즘과 Estimation기법을 이용한 퍼지 제어기 설계 (Design of Fuzzy PID Controller Using GAs and Estimation Algorithm)

  • 노석범;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.416-419
    • /
    • 2001
  • In this paper a new approach to estimate scaling factors of fuzzy controllers such as the fuzzy PID controller and the fuzzy PD controller is presented. The performance of the fuzzy controller is sensitive to the variety of scaling factors[1]. The desist procedure dwells on the use of evolutionary computing(a genetic algorithm) and estimation algorithm for dynamic systems (the inverted pendulum). The tuning of the scaling factors of the fuzzy controller is essential to the entire optimization process. And then we estimate scaling factors of the fuzzy controller by means of two types of estimation algorithms such as Neuro-Fuzzy model, and regression polynomial [7]. This method can be applied to the nonlinear system as the inverted pendulum. Numerical studies are presented and a detailed comparative analysis is also included.

  • PDF

이족 보행로봇의 3차원 모의실험기 개발 (Development of 3-Dimensional Simulator for a Biped Robot)

  • 노경곤;김진걸;허욱열
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 D
    • /
    • pp.2438-2440
    • /
    • 2004
  • This study is concerned with development of 3-Dimensional simulator of a biped robot that has a prismatic balancing weight or a revolute balancing weight. The dynamic stability equation of a biped robot which have a prismatic balancing weight is conditional linear but a walking robot's stability equation with a revolute balancing weight is nonlinear. To get a stable gait of a biped robot, stabilization equations with ZMP (Zero Moment Point) are modeled as non-homogeneous second order differential equations for each balancing weight type. A trajectory of balancing weight can be directly calculated with the FDM (Finite Difference Method) solution of the linearized differential equation. In this paper, the 3-Dimensional graphic simulator is programmed to get and calculate the desired ZMP and the actual ZMP. Walking of 4 steps was simulated and verified. This balancing system will be applied to a biped humanoid robot, which consist Begs and upper body, at future work.

  • PDF

회전마멸현상에서의 마찰과 편심의 영향 (Effect of friction and eccentricity on rebbing phenomenon)

  • 최연선;김준모;정호권
    • 소음진동
    • /
    • 제6권6호
    • /
    • pp.819-825
    • /
    • 1996
  • Nonlinear dynamic characteristics of rubbing phenomenon in rotor dynamics are investigated experimentally and numerically. Rubbing phenomenon occurs when rotor contacts with stator during whirling and causes the large amplitude of vibration, high whirl frequencies, and possibly catastrophic failure. Rubbing has various types of forward whirl, backward rolling, backward slipping, and partial rub depending on the system parameters of rotating machinery and running speed. Experiments are performed for forward whirl and backward whirl. And numerical analysis are conducted to explain the changes between backward rolling and backward slipping. Experimental and numerical results show that the types of whirling motion depends on the friction coefficient between rotor and stator and the eccentricity of rotor.

  • PDF

The application of BEM in the Membrane structures interaction with simplified wind

  • Xu, Wen;Ye, Jihong;Shan, Jian
    • Structural Engineering and Mechanics
    • /
    • 제31권3호
    • /
    • pp.349-365
    • /
    • 2009
  • Membrane structures are quite sensitive to wind and therefore the fluid-solid interaction can not be neglected in dynamic analysis. A boundary element method (BEM) for 3D simulation of wind-structure interaction in tensile membrane structures is presented in this paper. The flow is treated as incompressible and potential. The flow field is solved with boundary element method codes and structural simulation is performed by finite element method software ANSYS. The nonlinear equations system is solved iteratively, with segregated treatment of the fluid and structure equations. Furthermore this method has been demonstrated to be effective by typical examples. Besides, the influence of several parameters on the wind-structure interaction, such as rise-span ratio, prestress and the wind velocity are investigated according to this method. The results provide experience in wind resistant researches and engineering.

Expected damage for SDOF systems in soft soil sites: an energy-based approach

  • Quinde, Pablo;Reinoso, Eduardo;Teran-Gilmore, Amador;Ramos, Salvador
    • Earthquakes and Structures
    • /
    • 제17권6호
    • /
    • pp.577-590
    • /
    • 2019
  • The seismic response of structures to strong ground motions is a complex problem that has been studied for decades. However, most of current seismic regulations do not assess the potential level of damage that a structure may undergo during a strong earthquake. This will happen in spite that the design objectives for any structural system are formulated in terms of acceptable levels of damage. In this article, we analyze the expected damage in single-degree-of-freedom systems subjected to long-duration ground motions generated in soft soil sites, such as those located in the lakebed of Mexico City. An energy-based methodology is formulated, under the consideration of input energy as the basis for the evaluation process, to estimate expected damage. The results of the proposed methodology are validated with damage curves established directly with nonlinear dynamic analyses.