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Abstract

This paper is devoted lo investigating direct adaptive neural networks control of nonlinear systems with uncertain or unknown
dynamic models. In the direct adaptive neural networks control area, theoretical issues of the existing backpropagation-based
adaptive neural networks conirol schemes. The major contribution is proposing the variable index control approach, which is of
great significance in the control field, and applying it 1o derive new stable robust adaptive neural networks control schemes. This
new schemes possess inhcrent robustness to system model uncertainty, which is not required to satisfy any matching condition.

To demonstrale thc feasibility of the proposed lecarning algorithms and direct adaptive neural networks control schemes,
intensive computer simulations were conducted based on the flexible joint robot systems and functions.
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The existence of flexibilities in the robot structure
limits its ability to perform high precision

manipulator. Experimental results reveal that, for a
wide variety of robots, joint flexibility is principal source
contributing to overall robot flexibility[1]. Therefore, joint
flexibility should be taken into account in the modeling
and design of robot controllers if high performance is to
be achieved.

Due 1o existence of modeling errors, most conventional
control schemes for flexible joint robots have limited
control precisions. The control problem of flexible joint
robots with uncertain dynamic models attracted great
interest from both academia and industry. Different
control approaches have been proposed for flexible joint
robots in the past decade. They can be classified into: 1)
the exact model based control approach, 2) robust control
approach, 3) adaptive control approach, 4) iterative
learning control approach, 5) fuzzy control approach and
6) neural networks control approach.

Recently, the fuzzy control approach and neural
networks control approach have been attracting more
interest due to their potential in dealing with large
structural and large parametric uncertainty. In general, the
neural networks control approach is relatively new, and
there are theoretical results and less practical imple-
mentation experience available. The main exisiing
problems in the neural networks control approach are: 1)
how to ensure the global convergence of the learning
processes, and 2) how to determine the veural networks

Maniscript received March 15, 2001; revised May 1, 2001.

29

: direct adaptive neural networks, flexible joint robol systems.

structure for a given problem. At present, most existing
backprop-based neural networks control schemes are only
suitable for off-line training of mneural networks
controllers, since there are several methods and heuristics
to solve the above mentioned problems by off-line
training. Few published papers deal with the neural
networks control problem of flexible joint robots, due to
their higher order dynamics.

This paper aims at developing stable robust direct
adaptive neural networks controllers for flexible joint
robots. The feedback signals are the joint and motor
Measurements  of
accelerations or jerks are not required. It is proved that
all the signals in the closed-loop adaptive neural networks
control systems can be made bounded and the output
tracking errors can be guaranteed to be globally

angular positions and velocities.

convergent to zero. Since the new direct adaptive neural
networks control systems are robust to neural networks
representation errors, the structure design of the neural
networks can be simplified. Unlike the conventional
adaptive controllers, the proposed direct adaptive neural
networks control schemes allow the flexible joint robots
to possess a general structure and unknown disturbances,
and need the least a priori information about the
dynamics. Any observable dynamics, some of which were
regarded as unmodeled in conventional approaches, can
be modeled by neural networks.

{I. Neural Networks Control Algorithm

Figure 1 shows the configuration of the flexible joint
robot. For the formulation of the dynamic model of a
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robot with flexible joints, several commonly wused
assumptions will be adopted [2]. A robot with flexible
joints is usually modeled as a system of 2 » rigid bodies:
n links and » actuators, conmected by clastic transmis-
sions. The robot dynamic model may be obtained by
using Euler-Lagrange equations. The matrix form of
equations of motion can be expressed as follows:

49 Bt o
where g=[q,....q,]7 is the vector of the joint
angle; A(g) is inertia matrix including the stator masses
and also the rotor masses in their translational portion;
B(g, g) 1s the wvector of centrifugal, Coriolis and
gravitational terms; p=I[p,,...,p,]7 is the vector of
rotational angles of actuator rotors; the moment of inertia
of the rotor: I,=diagll;,...,I,] ; the viscous friction
coefficient of the joint: B, = diagl B, ..., B,.),; the
friction torque rotor:
F,=diogl F,, ...,
joint: K; and # is the vector of drive torques applied to

the actuator rotors.

acting on
F..17; the elastic constant of the
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Fig. 1. Model of the flexible joint robot.

Based on these facts, the following general model for
an g-link flexible joint robot manipulator is proposed:

AlD) g+ Ale, 9= Klg—np (2
Lo+ (a0, D) =u (3)

where f(g, ¢ and f(qg, p, p)are unknown function
vector; and K(g—p) is the unknown symmetric positive
definite joint stiffhess matrix and is nonlinear in g—p.

Assume that the desired trajectory of the end-effector
of a robot manipulator is expressed in joint coordinates
as g,=C*, and the corresponding desired trajectory of the
rotational angles of actuator rotors is expressed as p,
bpam by Which are to be determined. Only the measu-
rements of ¢(f, g(2), p(f), and p(¥ are available.

Define the tracking error vectors as:

e=q—qy,0=0"hy Y
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Let s;=e+A,e and s,= 6+ A,8. Therefore,

=g~ q, with ¢,= g,—ANe (5)
$u= 1-7_ 157' with 15,.= ﬁ.d_Agé\ (6)
where ¢, and p, are called the reference trajectories

and are computable from measured signals; A, and 4,

are diagonal positive definite matrices. With the new
notions, the gencralized error equations of the flexible
joint robotic systems can be expressed as follows:

Al s+ [A(9) ¢,+ Alq, Pl=EKp 7
Loskl, b+ f(a. b, D)l=u (2
Define new supplementary vectors of s, with
dead-zone 4, as follows;
S4=[Ss10000s S.dm]T i=1,2,..., n E)
with
SAI]':Sij_disat(%) =1, 2,...,n (10)

where sqi(.) is the saturation fimction.
Let

(e, @ G50)=1A9) G+ fila, DI—F Al@)sa (D)

£(a. 8, b, b)=IL.b,+fola. 0, b) (12)
glg—p=[ku,.... Kioo Ky oo Kl © (13)
Then equation(7) and (8) become:
A5+ ADsa=Er—g(a @ Gnsa) (19
InSs=u—g(a, b, b, $,) (15)

Assume that the corresponding approximation error
vectors of the neural networks with finite mumber of

neurons are  4y(H, dp(H, and  dy(H. Then
@4, @ drsa)s £g,p, 5. ), and g(g—p) can be

expressed as:

&g, 4, ¢ sa)=2mle, @ @nsa)+d(D (16)
gXa,0, b, 5.)=gmela. b, b, £.)+dx(D) an
gi(q—p)=gmala—D) +dy(1) (18)
K(g—p) = Kmla—p)+ Ka(D) (19)

where  gw( -)) (i=1,2,3) are realized by neural

di(D,
do(D, and ;(p are reducible and can be confined to be

networks. By proper neural networks design,

bounded by any specified small constant e,.

| dy(D | <ep i=1.2, i=1,...,n (20)

| do(D | <eop 7=1,2,..., % (21)
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Here, two-layer neural networks, the localized
polynomial networks with competitive lateral inhi-
bitory(CLI) cells, are adopted due to the possibility of
deriving global convergent leaming algorithms.

The localized receptive fields can be represented at
least in two ways: 1) as a set of superboxes and 2) as a
set of Gaussian potential function. Such realizations
define the fimction of the CLI cells, which resemble the
function of biological Golgi cells in the cerebellum. Take
the case of using Gaussian potential fimctions.

If the bounded working region Qc kY is divided into
J smaller subregions, £, 2; then Ax) can be
represented in each subregion Q; by a much lower order

.....

polynomial with the same given precision.

AP = B} (D =F(x) x=82 (22)

Define an input receptive field selection function for
each subregion as follows:

(23)

s(0)= 1 xEQ,]

0 x=0,

Then Ax) can be expressed in the following localized
representation:

(24)

A= 250 (Fwl 645 = 25D 7()

Fig. 2. Localized receptive field division using CLI cells.

The inputs to the CLI cells are

=[x %,]17eQCR", as shown in Figure 2.

The CLI cells perform the following computation:
(1) Gaussian potential function computation to deter-
mine the potential of the current inputs in each localized
receptive field:

2
— Cfn)

b= expl— 3G oy (@)

.....

(2) CLI to select a unique excitatory receptive field:

if p,(x)=max[p,(x),...,5;(x)]

if p{x) {max[p(x),...,07(x)] (26)

s(x) = [ 01

Because only one s5,(x) is allowed to be nonzero for
each input vector x, randomly select one s(x) to be
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excitatory and set the other s(x) to be zero when there
is a tie. This reflects the lateral inhibition property.
Based on the CLI cells, the structure of the localized
polynomial neural networks with CLI cells is defined as
shown in Figure 3 to realize the representation (24),
where f(x) is changed into f,(x)in the multi-output
case and realized by a low-order local polynomial neural
networks, and si(x) is realized by the CLI cells. The
interconnection lines between different CLI cells are
omitted in the figure. The outputs of the overall
multi-output network are:
(@7

.....

Ym= Jgsj(x)f;m(x) m=]

The number of the CLI cells .for each output, /, is
related to the order of each subpolynomial neural
networks, L. When [ is large, L can be small.

Fig. 3. The structure of localized polynomial networks with

CLI cells.
Using linear parameterization, we can express
ol +) (1=1,2,3) as follows:
emla, @ G,.50)=01(a, 4, ¢, 5070 (28)
ane(a, b, b, 5)=0xa.5, b, p,) 0 (29)
2na(a—0) = D5(a— D)7 6; (30)

where §(i=1,2,3) is the unknown output weight
vector of the newral networks; and @4 -) is defined

according to the structure of the used newral networks.
Assume that the flexible joint robotic system (2) and (3)
are time-invariant or slowly time-varying. Let the
estimated ¢, and @, and the estimation error vector be

G;= B,—6;. The outputs of the neural networks at time
instant # can be expressed as:

e e @ Gpsa)=0:(q, q, g-51)" 8 (31)
2w (@, b, b, 5)=0a, b, b, )7 B (32)
emala—)=0:(g—D7 B, (33)

Thus, the following direct adaptive neural networks
control algorithm is proposed:
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u=~Dys;+ gw(a. 0, b, b, (34)

pe= By '[Disi+ gmla. @ 405a)] (35)

where D, and D, are diagonal positive definite mat-

rices; K, is derived from equation (13) and (33). De-
fine:
di (=K Dp—dy () (36)
If the neural networks weights are updated as:
B=—T0\(q, ¢ Gy sa)5a (37)
8=—T0x(a., b, B)s 2 (38)
8 =Ty03(a—D)ss(s.a,8) (39)

where I(i=1,2,3are symmetric positive definite
matrices; and s;( 5,4, is defined from re-ordering the

right-hand side of the following equation:

gla—0"s3(s a0 = sa Klg—Dp (40)

lll. Simulation Results

The new direct adaptive newral networks control
system for flexible joimt robots can be illustrated by
Figure 4. The neural networks control algorithm consists
of the following steps: 1) error signal computing; 2)
neural networks weights updating; 3) desired motor
trajectory estimation; and 4) control torque computing.

R— a,
94,44, 9¢ | Direct Adaptive | U | Flexible
(3 (® Neurocontroller Joint Robot
ds 1d

T P, P

Fig. 4. Block diagram of the direct adaptive neural networks
control system.

¥ o

In order to evaluate the proposed control algorithms,
simulation were performed based on the dynamic model
of the flexible joint robot. The terms in equation (1) are
determined as follows:

A(q):[(al—l-Za.an (621-"(136‘2)] (41)

(Clg - as C.‘g) @y

Hig, d):[—aa 2; (2 d‘}"'r g2)52+ By 5]1] (49)

as ¢ S2+ By a
A set of nominal values of the parameters are
a1 =2.087, a2=0.084, @3=0.216, 4H~=0.4dm, &=0.3bm,
1 =0.1224kgm’,  I,p=0.0168kgm’, B, = 1.254Nms/rad,
B, =0.119Nms / rad, K =125.56Nm [ rad,
Ky=231.2TNm/ rad, By=2.041Nms [ rad,

By =0.242Nm/ rad, Foi=23.5sgn( p)Nm,
Fop=1.2sgn( ps)Nm, d,=0.018m.  The
between the joint angles and the end-effect position
is:

relation

x=hcos(qy) + lycos (g, + a3) (43)

y= Z1Siﬂ(01)+z25iﬂ(t]1+6]2) (44)

In the following, we assume that the model and the
above parameters of the flexible joint robot are unknown.
The direct adaptive neural networks control laws (34) and
(35) with equation (37), (38), and (39) as the learning
algorithms are applied to control the end-effect trajectory.
Due to their simplicity, the Gaussian radial basic function
networks are used to model the robot dynamics. Some a
priori information about the structure design. To ensure
the approximation precision and task space coverage,
2000 neurons are used in the neural networks comntroller.

The simulation is conducted to track the following
circle trajectory:

2= 0.64+0.8 cos (wh) m] (45)

vo=10.8 sin(wH[ m] (46)

The sampling period is 2ms, The actual end-effector
trajectory of the robot the learning stage is plotted in
Figure 5. After about 1400 steps of learning, the tracking
error becomes less than 3mm. after the learning
converges, the tracking error remain small as shown in
Figure 6. The simulation results show that the direct
adaptive neural networks control scheme is feasible and
robust to the neural networks representation crrors.

The second simulation is conducted to track the
rectangle trajectory with its four verties as (0.69, 0.2),
(0.54, 0.2), (0.54, -0.2), (0.69, -0.2). The sampling period
is 2ms. The actual end-effector trajectory of the robot
during the learning stage is plotted in Figwe 7. After
about 2000steps of learning, the tracking error becomes
less than 2mm. After the learning converges, the tracking
error remains small as shown in Figure 8.
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Fig, 3. The circle trajeclory tracking: leaming stage.
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Fig. 6. The circle trajectory tracking: working stage.
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Fig. 7. The rectangle trajectory tracking: learning stage.
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Fig. 8. The rectangle trajectory tracking: working stage.
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IV. Conclusions

This paper presents a novel direct adaptive neural
networks control scheme for general flexible joint robots.
The direct adaptive neural networks controller is robust to
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the representation errors of the neural networks with a
finite number of neurons and bounded additive external
disturbance.

Further research should be made along the lines of
providing the effects of the direct adaptive neural
networks control scheme by consecutive simulation and
experiments.
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