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Abstract

A neuro-fuzzy algorithm is presented for nuclear reactor power control in a pressurized water reactor.
Automatic reactor power control is complicated by the use of control rods because of highly nonlinear
dynamics in the axial power shape. Thus, manual shape controls are usually employed even for the lim-
ited capability during the power maneuvers. In an attempt to achieve automatic shape control, a
neuro-fuzzy approach is considered because fuzzy algorithms are good at various aspects of operator’s
knowledge representation while neural networks are effictent structures capable of learning from experi-
ence and adaptation to a changing nuclear core state. In the proposed neuro-fuzzy control scheme, the
rule base is formulated based on a multi-input multi-output system and the dynamic back-propagation
is used for learning. The neuro-fuzzy power control algorithm has been tested using simulation
responses of a Korean standard pressurized water reactor. The results illustrate that the proposed con-
trol algorithm would be a practical strategy for automatic nuclear reactor power control.

1. Introduction

In a nuclear plant, reactor power changes can be accomplished by core reactivity compensation and
power distribution control. Reactivity compensation accounts for the reactivity associated with the
changes in both power level and transient xenon level and is provided by a combination of control rod
position, boron concentration, and primary average coolant temperature adjustments. Power distri-
bution control is performed to maintain the core thermal margin within operating and safety limits.
Power distributions, usually axial shapes, are monitored and controlled during power maneuvers. Power
shape control is complicated by the use of control rods because it is highly coupled with reactivity com-
pensation. There have been some studies to develop a core control strategy that minimizes the effect on
the reactivity due to shape control.! ~* Power shape control, however, is not easy to be automated with a
conventional proportional-integral-derivative (PID) controller. Thus, manual shape controls are still
usually employed even for the limited load-following capability of nuclear plants. A reactor control
stratege called “mode K" was proposed to overcome such a limitation.® The “mode K” implements a
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heavy-worth bank dedicated to axial shape control, independent of the existing regulating banks. The
heavy bank provides a monotonic relationship between its motion and the axial shape change, which
allows automatic control of the axial power distribution. In real issues, changes in core design are
necessary to adapt “mode K” to the plants in operation or under construction. Recently. alternative
approaches®® by the implementation of advanced control algorithms have been presented., but to an ex-
perimental reactor rather than a commercial one.

In an attempt to achieve automatic shape control for a commercial reactor without any design modifi-
cation of the associated systems, a neuro-fuzzy appoach is consider in this study. Fuzzy algorithms!'® are
good at various aspects of operator’s knowledge repesentation of manual control rule-base, while neural
networks''11 are efficient structures capable of lerning from data-base of good experience and adap-
tation to a changing nuclear core state. The proposed neuro-fuzzy control algorithm has been developed
and tested for a Korean standard pressurized water reactor plant.!'?

Il. Neuro-Fuzzy Power Control Algorithm

The neuro-fuzzy control scheme, shown in Fig. 1, consists of three layers;input layer, hidden layer,
and output layer. Input parameters are fuzzified into linguistic variables through the corresponding
membership functions in the input layer. Linguistic control decisions are made in the hidden layer by
the action rule developed based on the operator’s control strategy. The Mamdani minimum operation
rule is used as an inference method to implement the preceding action rule. Linguistic control variables
are defuzzified into control output parameters in the output layers. The center of area method is used in
this process. In the meanwhile, the membership functions for fuzzification and weighting factors for
defuzzification are determined through the training with the operation data by the learning scheme of
neural networks. Dynamic back-propagation is employed for this purpose.

In the Korean standard pressurized water reactor, a change in boron concentration and insertion/
withdrawal of the regulating control element assembly (CEA) and the part-strength CEA (PSCEA) are
used to control the reactor power. During load-maneuvering operations, an operator manually changes
the boron concentration and the PSCEA position to maintain reactivity and power distribution within
the desired range, while the regulating CEAs are moved automatically by the reactor regulating system
(RRS) tc reduce the coolant average temperature deviation from the programmed reference value. A
neuro-fuzzy power control algorithm, which can take the place of a highly experienced operator, has
been deireloped to perform this load maneuvering operation automatically. This algorithm is a multi-in-
put mulri-output (MIMO) system consisting of five inputs and two outputs. The five input parameters
describing the core conditions used in the algorithm are as follows:

1. rate of reactivity change:dp/dt,

2. % error of axial power distribution: (Al — Al * 100,
3. error of core average coolant temperature : Toyg-Tprog,
4. position of regulating CEAs: between 0% and 100%,
5. position of PSCEAs : between 0% and 100%.

The difference between the power of the top half and bottom half of the core is defined as Al:1,.is the
target value at full power, all rods out and xenon equilibrium conditions.
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Fig 1. Structure neuro-fuzzy control algorithm

The two output parameters for the algorithms are defined as follows:
1. rate of change of the boron concentration: dppm/dt,
. 2. speed of the PSCEA movement: % of active core length /dt.

{l. Fuzzification, Decision-Making Logic, and Defuzzification for MIMO System

The value of the reactivity change rate, dp/dt, measured in units of % 2 p/hr, comes from the power
defect and xenon effects. This input is defined as the linguistic variable of reactivity rate (RTR). The pri-
mary fuzzy set is categorized as negative large (NL), negative medium (NM), negative small (NS), negative
near zero (NZ), positive near zero (PZ), positive small (PS), positive medium (PM), and positive large (PL)
which has triangular membership functions as shown in (a) of Fig. 2. The linguistic variable of delta I
error (DIE) and coolant temperature error (CTE) are introduced to the error of axial power distribution
and the error of average primary coolant temperature, respectively. The primary fuzzy set of DIE has
three terms, negative (NE), around target (AT), and positive (PO). These fuzzy sets have triangular mem-
bership functions as shown in (b) of Fig. 2, which have a crossover point at + 5%. The primary fuzzy set
of CTE has three terms:negative (NE), zero (ZE), and positive (PO). The membership functions of these
fuzzy sets are also triangular forms as shown in (¢} of Fig. 2, and have a crossover point at + 2°F.

The input parameters of the regulating CEAs’ and the PSCEAs’ positions are defined as the linguistic
variables of CEAs’ position (CEAPO) and PSCEAs' position (PSCPO), respectively. The primary fuzzy sets
of CEAPO and PSCPO are composed of same five linguistic values, such as insertion limit (IL), near in-
sertion limit (NIL), around center (AC), near withdrawal limit (NWL), and withdrawal limit (WL), which
are discretized and have membership functions as shown in (d) of Fig. 2. The insertion and withdrawal
limits are defined depending on the core conditions such as power level and power distribution.
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Fig 2. Membership functions for input parameters, TR(a), DTE(b), CTE(c), CEAPO and PSCPO (d).

Some simplification of the input parameters is required to set up the rule base, which is based on the
operator’s control actions that can not be made at once with many input parameters. The operational
knowledge was examined by introducing a new linguistic variable, supplementary boron requirement
(SBR). Three input parameters, CTE, CEAPO, and DIE, are used to obtain the fuzzy value of SBR. Figure
3 shows the overall fuzzy power control algorithm developed for load follow operations.

In the first step, all input values are fuzzified as described earlier. Then, the CTE and the CEAPO are
combined by ‘Rule-1’, which is tabulated in Table I, to generate a new linguistic variable defined as the
combined CEAPO and CTE (CCT). The terms of CCT are temperature positive (TP), CEA bottom (CB},
CEA cernter (CC), CEA top (CT), and temperature negative (TN). To obtain the fuzzy set and its value for
the CCT, defuzzification and fuzzification processes are accomplished with the triangular type member-
ship functions shown in (a) of Fig. 4.

In the next step, the linguistic variable of SBR is generated by combining the CCT and the DIE by
~Rule-2’ as shown in Table II. The SBR has three terms such as negative boron requirement (NBR), zero
boron requirement (ZBR), and positive boron requirement (PBR), which have triangular membership
functions as shown in (b} of Fig. 4.

Control action rules have been developed as shown in Table Ill based on the theoretical background of
a MIMO system.

55



S A L AE A 2783 =8 %] 1995 Vol. 5, No. 3.

RULZ-1 HW-]£| Fuscfioation |—

°m—@ o| totie-suls |—] Detemttioatica]—

O remtinin |

Fig 3. Schematic diagram of the overall neuro-fuzzy power control algorithm.
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Fig 4. Membership functions for (a) CCT and (b) SBR
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Table 1. Rule-1 which determines the CCT Table lf. Rule-2 which determines the SBR
| CEAPO DIE
CTEL ' IL | NIL = AC | NWL | WL CCT § NE AT PO
NE .. . . TN TP(1) : PBR | PBR PBR
ZE TP= ] CB cc CT * TN CB(2) PBR* |  ZBR NBR
PO TP |« . - cc(s) | PBR | ZBR NBR
*: Not Happen CTw) PBR ZBR NBR
=:1f CTE is ZE and CEAPOQ is IL, then CCT is TP T™G) . NBR NBR  NBR

*1F CCT is CB and DIE is NE, then SBR is PBR

1 2
R ={Rumo - Ruvmo - -Ramo 1
where Ryo represents the rule:if (x is A, and -,y is B) then (z, is C,, zqis D):

Table II. Action Rule which determines the BCR and the MOP

when SBR is ZBR

PSCPO - | IL NIL AC NWL WL
RTR \  BCR | MOP | BCR | MOP | BCR | MOP | BCR | MOP | BCR | MOP

NL DS | WB | DS | WB | DS | WB | DM | WS | DL | NA
NM NA | WB | NA | WB | NA | WB | DS* | Ws* | DM | NA
NS NA | WS | NA | WS  NA | WS | NA | ws | Ds NA
NZ NA | NA | NA | NA ' NA ' NA NA | NA | NA | NA
Pz NA | NA [ NA | NA NA NA  NA NA NA | Na
PS BS | NA | NA 1S NA IS NA | IS - NA 1S
PM BM | NA | BS 1S NA - IB NA 1B NA  IB
PL BL | NA | BM IS . BS IB BS | IB BS 1B

when SBR is PBR :

PSCPO — IL NIL AC | NWL WL

RTR | | BCR | MOP | BCR | MOP | BCR | MOP | BCR | MOP | BCR MOP

NL NA | WB | NA . WB | NA | WB | DS | WS | DM  NA
NM NA | WS | NA | WS | NA | WS | NA ' WS | DS NA
NS NA | NA | NA | NA NA | NA | NA | NA | NA NA
NZ NA | NA | NA | NA ! NA | NA ' NA ' NA | NA  NA
PZ BS | NA | BS | NA  BS NA  BS NA | BS NA
PS BM | NA | BS 1S | BS 1S BS IS | BS 1S
PM BL | NA | BM ' IS | BS 1B BS IB | BS IB
PL BX | NA | BL IS ' BM 1B  BM IB | BM IB

57



AR L 25 Al 2= EhE =F 2] 1995 Vol. 5, No. 3.

when SBR is NBR ;

PSCPO — IL NIL AC NWL WL
RTR | BCR MOP BCR MOP BCR MOP BCR MOP BCR MOP

NL DM WB DM WB DM WB DL WS DX NA
NM DS WB DS WB DS WB DM WS DL NA
NS DS WS DS WS DS WS DS WS DM NA
NZ DS NA DS NA DS NA DS NA DS NA
PZ NA NA NA NA NA NA NA NA NA NA
PS NA NA NA NA NA NA NA NA NA NA
PM BS NA NA IS NA 1S NA IS NA IS

PL BM NA BS IS NA | B NA IB NA IB

*If SBR is ZBR, RTR is NM, and PSCPO is NWL, then BCR is DS and MOP is WS, when SBR is NBR :

The PSCEA motion is defined as the linguistic variable of motion of PSCEA (MOP) which is categorized
as:insertion big (IB), insertion small (i), no access (NA), withdrawal small (WS), and withdrawal big
(WB). The membership function of this fuzzy set is shown in (a) of Fig. 5. The maximum speed of PSCEA
motion is limited to 100% of core height/hr because a higher speed can result in spurious distortion of

power distribution.

The remaining reactivity is compensated for by changing the boron concentration. The boron concen-
tration change is defined by the linguistic variable of boron change requirement (BCR), which has a pri-
mary fuzzy set of boration extra large (BX), boration large (BL), boration medium (BM), boration small
(BS), no access (NA), dilution small (DS), dilution medium (DM), dilution large (DL), and dilution extra

large (DX). The membership functions of these sets are shown in (b} of Fig. 5.

B IS NA WS wB
MOP
~-100 -50 ©0 60 100 (% core height/hr)
(a)
EX BL BM BS NA DS DM DL DX
BCR
40 30 20 0 0 -10 -20 -30 -40 (dppm/hr)

(b)

Fig 5. Membership functions for output CCT (a) and SBR (b).
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The Mamdani’s minimum operation rule was used as inference method to implement the above action
rule:

Zl=4AXB= [(,xrm(u) A 0/, v,

where Z' is the fuzzy implication function of 1-th control action for the minimum operation rule, A and B
are fuzzy sets in universe U and V with membership functions g, and g, and u and v are the elements
of universe U and V. The COA method was used for the defuzzification of MOP and BCR having the
membership functions of (a) and (b) of Fig. 5, respectively. The COA method generates the center of grav-
ity of the possibility distribution of a control action:

M
Zwluz
f=—t—
{

K
1

W ~’];.:..

7

where f is a control action in the output layer, w' is the weighting factor, and g, is the membership func-
tion with the number of the quantization level of the output, M.

IV. Learning Scheme of Neural Networks

The learning scheme of neural networks has been incorporated into the fuzzy algorithm described in
the previous section. This blending of neural and fuzzy is capable of learning from the data-base of good
experience and adaptation to a changing nuclear core state. The dynamic back-propagation method for
learning scheme is implemented to the MIMO system for reactor power control as follows:

For the data set of input and output parameters (x°, y?) from manual operation data-base, an error
function, which is to be minimized as a performance index for learning, is defined as:

=y UaP)=y)? ()

where xP is a set of input parameters for p-th output parameter y*.

The implication function, f, come through the hidden layer of neuro-fuzzy scheme in Fig. 1, can be de-
scribed as follows. For a general treatment, all membership functions are assumed to be of
Gaussian-type, while they were simplified into triangular forms in real application:

T w [Hatew (-F25))]
flx= T (2)
T (Matew (- )2)1

where ;f, o! are the mean value and standard deviation of the Gaussian- type membership function for
i-th input parameter contributing to lth control action, and w' is the weighting factor of output

contributed from l-th control action.

The basic learning scheme is that the parameters of w', Ef., ! are trained in order to minimize the er-
ror function ep through the dynamic back-propagation method as follows:
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Train w’

wk + 1) = w'k) —« 6e*|k 3)
aw

where, o = constant stepsize
1=1,2,.Mk=0,1,2,.

Introducing z! , the outcome of the hidden layer, the partial derivative of error function with respect to
the weigting factor can be derived as follows:

M
a=Y W' zY (4)
=1
M
b=Y (2 (5)
I=1

n x.—x!
Z=[1 exp [_(_:)-_(_'

i=1 ;

)) (©)

Then, by the chain rule,

de of oa _ . 1
ow ol =(f— y 2 (7

Substituting Eq.{7) to Eq.(3), the following learning algorithm for weighting facor &/ can be obtain:

'k + 1) =17 (k) — fb'y 2! (8)
Train x/
— — de
xi’(k+1)=xi’(k)—a‘ﬁj|k (9
where, i=1, 2,.,n;1=1, 2,..M:k=0, 1, 2,...
Similarly to the previous case,
de af a8zt _ wi—-f |, 2lt-x})
6@1_()( y) 0z @xfll =(f-y b Z G_[iz (10)
Substituting Eq.(10) to Eq.(9), the following learning algorithm for ¥/ can be obtained:
— — f-y — 2x2—x/ (k)
x/k+D=x}k~« 5 (wl—f)zl‘_j,iT‘Uc)*— (1

Train o

Similarly, the learning algorithm for ¢ is:
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T e+ =5/ (-2 |y

do,
- f-y — 20x2—x} (k)
=g k)—a- 5 (w’—f)z’*—(;;;a—(k—)—v (12)
Equations (8), (11) and (12) performs the learning algorithm by training the parameters, w’, x /, a{, as

the norrnalized error, (f-y)/b, is being back-propagated into the layer of w ! updating the value of 2/ and
as the niormalized error multiplied by (w!—f) z' is being back-propagated into the layer of z' updating
the values of x /and ¢.

For reactor power control, the data set of two input parameters RTR and PSCPO, and two output
parameters MOP and BCR has been utilized to implement the neural learning scheme based on the
manual operation data at the beginning of core cycle.

V. Testing and Evaluation

A typical 100-50-100 (%), 14-2-6-2 (hr) load change pattern has been evaluated for the performance
capability between manual control and neuro-fuzzy control. The evaluated daily load cycle maintained
the power initially at 100% power for 14 hours. followed by a power decrease from 100% to 50% in 2
hours, followed by 6 hours at the reduced power level of 50% power. The load cycle was completed by in-
creasing power to full rated power in 2 hours. This load cycle has been tested at the beginning of cycle
(BOC:2000 MWd/tonne U). A three-dimensional nodal code, ROBUST!?, was used for simulation. As
part of the evaluation performed, Fig. 6 illustrates the behavior of a number of key core parameters: er-
ror of Tavg, boron concentration, Al, CEA position, PSCEA position, and the power operating limit (POL)
with the power level. As shown, the above parameters are varied in a typical load maneuvering pattern
within the operational limit. One of findings is that an output parameter of BCR has been well trained
by the neural learning scheme. Those results promise automation of nuclear reactor power control by
the proposed-neuro-fuzzy algorithm.
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Fig 6. Reactor core parameters during daily load-follow operation at BOC

VI. Conclusions and Recommendations

A neuro-fuzzy power control algorithm has been proposed for load-follow operations for automatic re-

actor power control in a Korean standard pressurized water reactor. Neuro-fuzzy control has been found
to enable precise, well performing load maneuvering, based on the knowledge of experts and operating

data, and it is found to be an approach to automatic reactor power control without necessitating any

changes in core design. Fuzzy control for load maneuvering could contribute to a reduction of human

errors during certain operations normally utilizing manual control. The results of the simulation for the

plant using the neuro-fuzzy power control algorithm imply that this method can be a practical control

strategy for automatic reactor power control. In the next phase of the research to be published as part II,

more refinements will be made in the neural learning scheme for adaptation to a changing core

conditions through the core life.
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