• Title/Summary/Keyword: nonlinear deformation

Search Result 1,006, Processing Time 0.02 seconds

Deformation analysis of shallow tunneling with unconsolidated soil using nonlinear numerical modeling (비선형 수치모델링을 이용한 미고결 지반 저토피 터널의 변형해석)

  • Lee, Jae-Ho;Kim, Young-Su;Yoo, Ji-Hyeung;Jeong, Yun-Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.2
    • /
    • pp.105-116
    • /
    • 2010
  • The estimation of surface settlement, ground behavior and tunnel displacement are the main factors in urban tunnel design with shallow depth and unconsolidated soil. On deformation analysis of shallow tunnel, it is important to identify possible deformation mechanism of shear bands developing from tunnel shoulder to the ground surface. This paper investigated the effects of key design parameter affecting deformation behavior by numerical analysis using nonlinear model incorporating the reduction of shear stiffness and strength parameters with the increment of the maximum shear strain after the initiation of plastic yielding. Numerical parametric studies are carried out to consider the reduction of shear stiffness and strength parameters, horizontal stress ratio, cohesion and shotcrete thickness.

A new approach for finite element analysis of delaminated composite beam, allowing for fast and simple change of geometric characteristics of the delaminated area

  • Perel, Victor Y.
    • Structural Engineering and Mechanics
    • /
    • v.25 no.5
    • /
    • pp.501-518
    • /
    • 2007
  • In this work, a new approach is developed for dynamic analysis of a composite beam with an interply crack, based on finite element solution of partial differential equations with the use of the COMSOL Multiphysics package, allowing for fast and simple change of geometric characteristics of the delaminated area. The use of COMSOL Multiphysics package facilitates automatic mesh generation, which is needed if the problem has to be solved many times with different crack lengths. In the model, a physically impossible interpenetration of the crack faces is prevented by imposing a special constraint, leading to taking account of a force of contact interaction of the crack faces and to nonlinearity of the formulated boundary value problem. The model is based on the first order shear deformation theory, i.e., the longitudinal displacement is assumed to vary linearly through the beam's thickness. The shear deformation and rotary inertia terms are included into the formulation, to achieve better accuracy. Nonlinear partial differential equations of motion with boundary conditions are developed and written in the format acceptable by the COMSOL Multiphysics package. An example problem of a clamped-free beam with a piezoelectric actuator is considered, and its finite element solution is obtained. A noticeable difference of forced vibrations of the delaminated and undelaminated beams due to the contact interaction of the crack's faces is predicted by the developed model.

Bound of aspect ratio of base-isolated buildings considering nonlinear tensile behavior of rubber bearing

  • Hino, J.;Yoshitomi, S.;Tsuji, M.;Takewaki, I.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.3
    • /
    • pp.351-368
    • /
    • 2008
  • The purpose of this paper is to propose a simple analysis method of axial deformation of base-isolation rubber bearings in a building subjected to earthquake loading and present its applicability to the analysis of the bound of the aspect ratio of base-isolated buildings. The base shear coefficient is introduced as a key parameter for the bound analysis. The bound of the aspect ratio of base-isolated buildings is analyzed based on the relationship of the following four quantities; (i) ultimate state of the tensile stress of rubber bearings based on a proposed simple recursive analysis for seismic loading, (ii) ultimate state of drift of the base-isolation story for seismic loading, (iii) ultimate state of the axial compressive stress of rubber bearings under dead loads, (iv) prediction of the overturning moment at the base for seismic loading. In particular, a new recursive analysis method of axial deformation of rubber bearings is presented taking into account the nonlinear tensile behavior of rubber bearings and it is shown that the relaxation of the constraint on the ultimate state of the tensile stress of rubber bearings increases the limiting aspect ratio.

Performance assessment of RC frame designed using force, displacement & energy based approach

  • Kumbhara, Onkar G.;Kumar, Ratnesh
    • Structural Engineering and Mechanics
    • /
    • v.73 no.6
    • /
    • pp.699-714
    • /
    • 2020
  • Force based design (FBD) approach is prevalent in most of the national seismic design codes world over. Direct displacement based design (DDBD) and energy based design (EBD) approaches are relatively new methods of seismic design which claims to be more rational and predictive than the FBD. These three design approaches are conceptually distinct and imparts different strength, stiffness and ductility property to structural members for same plan configuration. In present study behavioural assessment of frame of six storey RC building designed using FBD, DDBD and EBD approaches has been performed. Lateral storey forces distribution, reinforcement design and results of nonlinear performance using static and dynamic methods have been compared. For the three approaches, considerable difference in lateral storey forces distribution and reinforcement design has been observed. Nonlinear pushover analysis and time history analysis results show that in FBD frame plastic deformation is concentrated in the lower storey, in EBD frame large plastic deformation is concentrated in the middle storeys though the inelastic hinges are well distributed over the height and, in DDBD frame plastic deformation is approximately uniform over the height. Overall the six storey frame designed using DDBD approach seems to be more rational than the other two methods.

Mechanical Testing and Nonlinear Material Properties for Finite Element Analysis of Rubber Components (고무부품의 유한요소해석을 위한 재료시험 및 비선형 재료물성에 관한 연구)

  • Kim, Wan-Doo;Kim, Wan-Soo;Kim, Dong-Jin;Woo, Chang-Soo;Lee, Hak-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.848-859
    • /
    • 2004
  • Mechanical testing methods to determine the material constants for large deformation nonlinear finite element analysis were demonstrated for natural rubber. Uniaxial tension, uniaxial compression, equi-biaxial tension and pure shear tests of rubber specimens are performed to achieve the stress-strain curves. The stress-strain curves are obtained after between 5 and 10 cycles to consider the Mullins effect. Mooney and Ogden strain-energy density functions, which are typical form of the hyperelastic material, are determined and compared with each other. The material constants using only uniaxial tension data are about 20% higher than those obtained by any other test data set. The experimental equations of shear elastic modulus on the hardness and maximum strain are presented using multiple regression method. Large deformation finite element analysis of automotive transmission mount using different material constants is performed and the load-displacement curves are compared with experiments. The selection of material constant in large deformation finite element analysis depend on the strain level of component in service.

A Safety about the Pipe Joint with Nonlinear Property (비선형 특성을 갖는 파이프 연결부에 대한 안전성)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.2
    • /
    • pp.3-8
    • /
    • 2007
  • Nonlinear property and contact matter are analyzed about the pipe applied with internal pressure through this study. The weakest part and its safety can be examined. Maximum equivalent stress is shown at the contact surface between bolt and nut. The value of contact stress with the pressure of 12MPa is increased 1.4 times as large as that with no pressure. The maximum contact pressure is shown at the clamp corner of the external surface on pipe. The value of contact pressure with the pressure of 12MPa is increased 1.4 times as large as that with no pressure. The radial deformation with no pressure is also increased greatly at the middle part of internal surface on pipe. But this maximum deformation on pipe with the pressure of 12MPa is shown at the part far away the support of pipe. This value is increased 5.7 times as large as that value with no pressure. As contact status, the sticking occurs most at the external surface of pipe. It also tends to occur at the contact surface between bolt and nut. At the external surface of pipe, the sticking in case of the pressure of 12MPa occurs more than that in case of no pressure.

  • PDF

Prediction of Nonlinear Shear Behavior of Reinforced Concrete Beam-Column Joints (철근콘크리트 보-기둥 접합부의 비선형 전단거동예측)

  • Cho, Chang-Geun;Woo, Sung-Woo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.29-36
    • /
    • 2009
  • The present study emphasizes a nonlinear model to predict the shear behaviour of reinforced concrete interior beam-column joints. To model the shear behaviour of a panel zone in the beam-column joint, a modified softened truss model theory for in-plane shear prediction was introduced. This relationship was changed to define the characteristics for the rotational spring to represent the shear deformation in the joint by an equivalent moment-rotation relationship from the joint equilibrium. The analysis model was compared with experiments on reinforced concrete interior beam-column joints that were subjected to axial and shear forces, and the current model was found to accurately predict not only the shear force but also the shear deformation in the joint.

A Study on Contact Deformation of Automotive Door Weatherstrip Using Non-linear Finite Element Method (비선형 유한요소법을 이용한 자동차 도어 웨더스트립의 접촉변형에 관한 연구)

  • Kim Byung Soo;Moon Byung-Young;Kim Kwang-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.1-7
    • /
    • 2005
  • In vehicle door system, weatherstrip seals protect passengers form noise, dust, rain and wind out of the vehicle. The higher efficient a weatherstrip is, the more durable it is in contact between the door and body frame. In this study, nonlinear finite element(FE) analysis is performed to obtain cauchy-stresses, displacements and reaction forces of the weatherstrip. Mechanical properties of the weatherstrip is obtained by uniaxial tension test. The MARC which is a commercial software for the nonlinear analysis of a flexible FE model is used. Twenty-one cases of the FE model are developed by using Ogden-foam formulation. In the results of nonlinear FE analysis, the most valuable deformation of the weatherstrip occurred when displacement control value reaches 7.2mm. Severe deformation is observed as the displacement control value become more increased. When the weatherstrip is designed, it would be considered that the displacement value of the weatherstrip has to be less than 7.2mm.

Numerical analysis of thermal post-buckling strength of laminated skew sandwich composite shell panel structure including stretching effect

  • Katariya, Pankaj V.;Panda, Subrata Kumar
    • Steel and Composite Structures
    • /
    • v.34 no.2
    • /
    • pp.279-288
    • /
    • 2020
  • The computational post-buckling strength of the tilted sandwich composite shell structure is evaluated in this article. The computational responses are obtained using a mathematical model derived using the higher-order type of polynomial kinematic in association with the through-thickness stretching effect. Also, the sandwich deformation behaviour of the flexible soft-core sandwich structural model is expressed mathematically with the help of a generic nonlinear strain theory i.e. Green-Lagrange type strain-displacement relations. Subsequently, the model includes all of the nonlinear strain terms to account the actual deformation and discretized via displacement type of finite element. Further, the computer code is prepared (MATLAB environment) using the derived higher-order formulation in association with the direct iterative technique for the computation of temperature carrying capacity of the soft-core sandwich within the post-buckled regime. Further, the nonlinear finite element model has been tested to show its accuracy by solving a few numerical experimentations as same as the published example including the consistency behaviour. Lastly, the derived model is utilized to find the temperature load-carrying capacity under the influences of variable factors affecting the soft-core type sandwich structural design in the small (finite) strain and large deformation regime including the effect of tilt angle.

Nonlinear analysis of the influence of increments amounts and history load on soil response

  • Ivandic, Kreso;Soldo, Bozo
    • Structural Engineering and Mechanics
    • /
    • v.33 no.1
    • /
    • pp.67-77
    • /
    • 2009
  • The soil response calculation is described, by which, threw the fictive path of stress, the stress-deformation diagrams are determined, considering the nonlinear soil behavior. The calculation are lead incrementally, by which is shown that in the presented soil model (modified Cam Clay), considering the influence of overconsolidated soil pressure OCR, the number of calculation steps may, but not necessarily, have a sufficient influence on the value of failure load and definite soil deformation. The simplicity and the practicalness of the procedure, the enables modeling the complex relations in soil.