• 제목/요약/키워드: nonlinear concrete

검색결과 1,771건 처리시간 0.027초

열화된 철근콘크리트 교각의 성능평가 (Performance Assessment of Deteriorated Reinforced Concrete Bridge Columns)

  • 김태훈
    • 한국지진공학회논문집
    • /
    • 제15권5호
    • /
    • pp.45-54
    • /
    • 2011
  • 이 연구에서는 열화된 철근콘크리트 교각의 성능평가를 위한 비선형 유한요소해석 기법을 제시하였다. 사용된 프로그램은 이러한 철근콘크리트 구조물의 해석을 위한 RCAHEST이다. 재료적 비선형성에 대해서는 균열콘크리트에 대한 인장, 압축, 전단모델과 콘크리트 속에 있는 철근모델을 조합하여 고려하였다. 열화된 철근콘크리트 교각의 거동을 예측하기 위해서 진보된 열화재료모델을 개발하였다. 이 연구에서는 열화된 철근콘크리트 교각의 성능을 파악하기 위해 제안한 해석기법을 신뢰성 있는 연구자의 실험결과와 비교하여 그 타당성을 검증하였다.

콘크리트 인장강성이 철근콘크리트 보의 거동에 미치는 영향 (Effect of Tension Stiffering on the Behavior of Reinforced Concrete Beam)

  • 이봉학
    • 한국농공학회지
    • /
    • 제41권4호
    • /
    • pp.104-112
    • /
    • 1999
  • Tensile behavior in concrete has been neglected until recently. However, the effect of tensile stresses in concrete must be considered where the member primarily carries tensile forces or when ultimate strength is affected by the cracking history. In this paper, a series of experiments were performed with a reinforced rectangular beams of 15 specimens in order to investigate the effect of tension stiffening into the nonlinear analysis and cracking behavior. The experimental results were analyzed in terms of load-deflection curves and strain fracture energy with respect to the main experimental variables such as types of specimen, strength of concrete and steel ration. The results from experiments and finite element analysis were compared in terms of load-deflection relationship and cracking pattern. The results are as follows ; The tension stffening effects of reinforced concrete beams were observedc up to yielding of members after cracking showing strain energy difference of 35 % at the beam of 0.57% steel ratio compared with that of beam ignoring the tension stiffening effect. The tension stiffening of concrete strength 400kgf/$\textrm{cm}^2$ and 600kgf/$\textrm{cm}^2$ increased by 8% and 13%, respectively, compared with that of concrete strength 200kgf/$\textrm{cm}^2$. The tension stiffening effects were greater at a ductile member rather than a brittle one. The load-deflection results of finite element analysis showed very similar results from experiment. The crack growth and pattern might be predicted from the nonlinear finite element analysis considering concrete stiffening.

  • PDF

Concrete properties prediction based on database

  • Chen, Bin;Mao, Qian;Gao, Jingquan;Hu, Zhaoyuan
    • Computers and Concrete
    • /
    • 제16권3호
    • /
    • pp.343-356
    • /
    • 2015
  • 1078 sets of mixtures in total that include fly ash, slag, and/or silica fume have been collected for prediction on concrete properties. A new database platform (Compos) has been developed, by which the stepwise multiple linear regression (SMLR) and BP artificial neural networks (BP ANNs) programs have been applied respectively to identify correlations between the concrete properties (strength, workability, and durability) and the dosage and/or quality of raw materials'. The results showed obvious nonlinear relations so that forecasting by using nonlinear method has clearly higher accuracy than using linear method. The forecasting accuracy rises along with the increasing of age and the prediction on cubic compressive strength have the best results, because the minimum average relative error (MARE) for 60-day cubic compressive strength was less than 8%. The precision for forecasting of concrete workability takes the second place in which the MARE is less than 15%. Forecasting on concrete durability has the lowest accuracy as its MARE has even reached 30%. These conclusions have been certified in a ready-mixed concrete plant that the synthesized MARE of 7-day/28-day strength and initial slump is less than 8%. The parameters of BP ANNs and its conformation have been discussed as well in this study.

손상된 철근콘크리트 구조물의 구조성능평가 (Structural Performance Assessment of Damaged Reinforced Concrete Structures)

  • 김태훈;김영진
    • 한국지진공학회논문집
    • /
    • 제15권1호
    • /
    • pp.19-28
    • /
    • 2011
  • 이 연구에서는 손상된 철근콘크리트 구조물의 구조성능평가를 위한 비선형 유한요소해석 기법을 제시하였다. 사용된 프로그램은 철근콘크리트 구조물의 해석을 위한 RCAHEST이다. 재료적 비선형성에 대해서는 균열콘크리트에 대한 인장, 압축, 전단모델과 콘크리트 속에 있는 철근모델을 조합하여 고려하였다. 그리고 철근콘크리트 구조물의 비탄성거동의 예측에 근거한 손상지수를 제시하였다. 이 연구에서는 손상된 철근콘크리트 구조물의 구조성능을 파악하기 위해 제안한 해석기법을 신뢰성 있는 연구자의 실험결과와 비교하여 그 타당성을 검증하였다.

Flexural behavior of prestressed hybrid wide flange beams with hollowed steel webs

  • Han, Sun-Jin;Joo, Hyo-Eun;Choi, Seung-Ho;Heo, Inwook;Kim, Kang Su
    • Steel and Composite Structures
    • /
    • 제38권6호
    • /
    • pp.691-703
    • /
    • 2021
  • In this study, experiments were conducted to evaluate the flexural performance of prestressed hybrid wide flange (PHWF) beams with hollowed steel webs. A total of four PHWF beams were fabricated, where the width and spacing of the steel webs and the presence of cast-in-place (CIP) concrete were set as the main test parameters, and their flexural behavior and crack patterns, and the longitudinal strain distribution in a section with respect to the width and spacing of the steel webs were analyzed in detail. The experiment results showed that, as the ratio of the width to the spacing of the steel webs decreased, the flexural stiffness and strength of the PHWF beams without CIP concrete decreased. In addition, in the case of composite PHWF beam with CIP concrete, fully composite behavior between the precast concrete and the CIP concrete was achieved through the embedded steel member. Finite element analyses were performed for the PHWF beams considering the bond properties between the hollowed steel webs and concrete, and nonlinear flexural analyses were also conducted reflecting the pre-compressive strains introduced only into the bottom flange. From the comparison of the test and analysis results, it was confirmed that the analysis models proposed in this study well evaluated the flexural behavior of PHWF beams with and without CIP concrete.

부착슬립에 의한 강체변형을 고려한 철근콘크리트 보의 비선형해석 (Nonlinear Analysis of RC Beams Considering Fixed-End Rotation due to Bond-Slip)

  • 곽효경;김선필
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.456-463
    • /
    • 2005
  • An analytical procedure to analyze reinforced concrete (RC) beams subject to monotonic loadings is proposed on the basis of the moment-curvature relations of RC sections. Unlike previous analytical models which result the overestimation of stiffnesses and underestimation of structural deformations induced from ignoring the shear deformation and assuming perfect-bond condition between steel and concrete, the proposed relation considers the rigid-body-motion due to anchorage slip at the fixed end. The advantages of the proposed relation, compared with the previous numerical models, are on the promotion in effectiveness of analysis and reflection of influencing factors which must be considered in nonlinear analysis of RC beam by taking into account the nonlinear effects into the simplifying moment-curvature relation. Finally, correlation studies between analytical and experimental results are conducted to establish the applicability of the proposed model to the nonlinear analysis of RC structures.

  • PDF

근사모드법을 이용한 철근콘크리트 구조물의 비선형해석 (Nonlinear Dynamic Anslysis of R/C Structures Using Approximate Modal Approach)

  • 장극관;이리형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1994년도 봄 학술발표회 논문집
    • /
    • pp.77-84
    • /
    • 1994
  • An approximate method of normal coordinate idealization for use in nonlinear R/C frames has been developed. Normal coordinate apporaches have been used for nonlinear problems in the past, but they are not received wide acceptance because of the need for eigenvector computation in each time step. The proposed method cicumvents the eigenvector recalculation problem by evaluating a limited number of sets of mode shapes in performing the dynamic analysis. Then the predetermined sets of eigenvectors are used in the nonlinear dynamic analysis, repeatedly. The method is applied to frame structures with ductiles R/C elements. The plastic hinge zones are modeled with hysteresis loops which evince degrading stiffness and pinching effects. The method is applied to frames with local nonlinearities. Efficiencies and accuracies of the method for this application are presented.

  • PDF

지진하중에 대한 지하철구조물의 비선형 시간영역해석 (Nonlinear Time-Domain Analysis of Underground Subway Structure Subjected to Seismic Loadings)

  • 김재민;이중건
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2001
    • /
    • pp.163-170
    • /
    • 2001
  • This paper presents results of nonlinear analyses for underground structures including both the soil-structure interaction and nonlinear behavior of concrete material. For this purpose, a hybrid method is employed, in which a dynamic analysis technique for a linear soil-structure interaction system and a general purpose FE program are combined in hybrid and practical manners. A couple of nonlinear analyses are carried out for framed structures in multi-layered half space soil medium. The yielding of concrete structure is considered by a multi-linear stress- strain relationship. The numerical results suggest that ductile design fur the intermediate columns in the underground framed structure is substantially important in aseismic design.

  • PDF

비선형 지진해석을 통한 삼각망 철근상세를 갖는 중실 철근콘크리트 기둥의 성능평가 (Performance Assessment of Solid Reinforced Concrete Columns with Triangular Reinforcement Details Using Nonlinear Seismic Analysis)

  • 김태훈;나경웅;신현목
    • 한국지진공학회논문집
    • /
    • 제21권1호
    • /
    • pp.11-20
    • /
    • 2017
  • This study investigates the seismic performance of solid reinforced concrete columns with triangular reinforcement details using nonlinear seismic analysis. The developed reinforcement details are economically feasible and rational, and facilitate shorter construction periods. By using a sophisticated nonlinear finite element analysis program, the accuracy and objectivity of the assessment process can be enhanced. Solution of the equations of motion is obtained by numerical integration using Hilber-Hughes-Taylor (HHT) algorithm. The proposed numerical method gives a realistic prediction of seismic performance throughout the input ground motions for several column specimens. As a result, developed triangular reinforcement details were designed to be superior to the existing reinforcement details in terms of required performance.

Nonlinear Analysis of RC Structures using Isogeometric RM Shell Element

  • Park, Kyoung Sub;LEE, Sang Jin
    • Architectural research
    • /
    • 제20권1호
    • /
    • pp.9-16
    • /
    • 2018
  • Nonlinear analysis of reinforced concrete (RC) structures is performed by using isogeometric Reissner-Mindlin (RM) shell element. The elasto-plastic constitutive model is employed to express the nonlinear behavior of concrete material and the equivalent smeared steel layer is introduced to represent steel reinforcement. The arc-length control method is used to produce the entire load-displacement path of RC structures. Finally, three benchmark tests are carried out to verify the performance of the present shell element. From isogeometric analysis, the present results show a good agreement with experimental results and it is provided as future benchmark test solutions.