• Title/Summary/Keyword: nonlinear characteristics

Search Result 2,956, Processing Time 0.061 seconds

Modeling of Feeding System for Optical Disk Drive and Nonlinear Dynamic Analysis of it (광 디스크 드라이브 이송계의 모델링 및 비선형 특성 분석)

  • Lee, Kwang-Hyun;Choi, Jin-Young;Park, Tae-Wook;Yang, Hyun-Seok;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.75-78
    • /
    • 2004
  • In an optical disk drive, a feeding system which is used to move the optical pick-up system to the target position and the proper control scheme of it are important in random access performance. Since the effect of control is directly affected by the modeling precision of the real system, the precise modeling to the real system should be acquired. Although a simple linear order modeling to the feeding system of an optical disk drive is useful in understanding of the overall dynamic characteristics, the dynamic characteristics which are belongs to the nonlinear area cannot be predicted correctly. Furthermore, the feeding system of an optical disk drive has many nonlinear characteristics such as a nonlinear friction and backlash. For this reason, the understanding of the nonlinear properties in the feeding system is very important. In this paper, the nonlinear items of the feeding system, friction and backlash, are introduced and the effect of it are investigated. Finally, the mathematical model considering the nonlinear properties is compared to the real system, and some comments of it are given.

  • PDF

Study on Properties of Pitch Control for Wind Turbine (풍력터빈의 피치 PI 제어기 특성 고찰)

  • Lim, Chae-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.1
    • /
    • pp.59-65
    • /
    • 2011
  • The aerodynamic power and torque of wind turbines are extremely nonlinear. Therefore, the overall dynamic behavior of a wind turbine exhibits nonlinear characteristics that are dependent on the magnitude of the wind speed. The nonlinear aerodynamic characteristics of the wind turbine also affect the characteristics of the control system of the wind turbine. Therefore, the analysis of the nonlinear aerodynamic characteristics of wind turbine is essential in designing the wind-turbine controller. In this study, the nonlinear aerodynamic characteristics and the effects of these characteristics on the closed-loop pitch system with PI controller for an 1-mass model of the wind turbine are investigated above rated power.

Nonlinear Modeling Employing Hybrid Deformation Variables and Frequency Response Characteristics of a Cantilever Beam Undergoing Axially Oscillating Motion (축 방향 왕복운동을 하는 외팔보의 복합변형변수를 이용한 비선형 모델링 및 주파수 응답특성)

  • 김나은;현상학;유홍희
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.3
    • /
    • pp.210-216
    • /
    • 2003
  • A nonlinear dynamic modeling method for cantilever beams undergoing axially oscillating motion is presented in this paper. Hybrid deformation variables are employed for the modeling method with which frequency response characteristics of axially oscillating cantilever beams are investigated. It is shown that the geometric nonlinear effects of stretching and curvature play important roles to accurately predict the frequency response characteristics. The effects of the amplitude and the damping constant on the frequency characteristics are also exhibited.

Comparison of PID and Feedback Linearization Control for Magnetic Levitation System (자기부상 시스템의 PID 제어와 Feedback Linearization 제어와의 성능비교)

  • 박종석;김동환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.263-263
    • /
    • 2000
  • Electromagnetic Suspension(EMS) System produces no noise, friction and heat through non-contacting operation Therefore, the applicable device using EMS system has a lot of attraction in case of the high-speed and non-contacting transmission EMS with nonlinear properties requires a precise airgap position control and stable kinematics characteristics under the disturbances, In this study, the nonlinear system was linearized by a Nonlinear Feedback Lineariztion(NFL) method. The NFL method requires that the modelling should be exact, and the state variables should be measured and a rapidly operating controller be necessary on account of a heavy data calculating In the experiments. the ideal control characteristics of the NFL was acquired through simulation at first. then the characteristics of the actual system were compared with those of simulation. In addition, the results by NFL were examined and analysed considering the characteristics of the PID control. The Control by NFL shows much stable control characteristics than the PID control. Whereas, the steady state errors occur for various disturbances. hence a robust control design is remained for a further study.

  • PDF

Analysis of Nonlinear Resistive Networks (비선형저항(resistive)회로망의 해석)

  • Kyun Hyon Tchah
    • 전기의세계
    • /
    • v.23 no.3
    • /
    • pp.70-76
    • /
    • 1974
  • Computer is used to analyze nonlinear networks. Integrated circuits and new nonlinear elements have generated much interest in nonlinear circuit theory. A key to the understanding and analysis of nonlinear circuits is the study of characteristics for nonlinear elements and nonlinear resistive networks both in theory and in computation. In this apper, an iteration method using cut set analysis for nonlinear dc analysis based on Branin's method is described. Application of this algorithm to solve two nonlinear problems, is presented and a possible method of improving the basic algorithm by means of a sparse matrix technique is described.

  • PDF

A Method for Measuring Nonlinear Characteristics of a Robot Manipulator Having Two-degree-of-freedom

  • Harada, H.;Toyozawa, Y.;Kashiwagi, H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.221-224
    • /
    • 2005
  • The authors have recently developed a method for identification of Volterra kernels of nonlinear systems by using M-sequence and correlation technique. In this paper, we apply the proposed method to identification of a robot manipulator which has two degrees of freedom. From the results of the experiment, the nonlinear characteristics of the robot manipulator can be identified by the proposed method.

  • PDF

Nonlinear Vibration Characteristics of Piezoelectric Microactuators in Hard Disk Drive Drives (HDD용 압전형 마이크로 액츄에이터의 비선형 진동특성)

  • Chong, Duk-Young;Lee, Seung-Yop;Kim, Chul-Soon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.225-231
    • /
    • 2000
  • Nonlinear characteristics of piezoelectric-type micro actuator used for hard disk drives are experimentally analyzed using Hutchinson's Magnum acturator. The nonlinear effects include hysteresis, superharmonic resonance, jump phenomenon, and shifting of natural frequencies. The effects of exciting frequency and input voltage on the nonlinear phenomena are investigated. It is shown that the micro actuator has the typical 3 times superhamonic resonances coupled to both 1st torsional and sway modes of the suspension.

  • PDF

Nonlinear Parameter Estimation of Suspension System (현가장치의 비선형 설계변수 추정)

  • 박주표;최연선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.281-286
    • /
    • 2003
  • A Suspension system of a car is composed of dampers and springs. The dampers and springs usually have nonlinear characteristics. However, the nonlinear characteristics of the springs and dampers through analytical model cannot agree with the experimental results. Therefore, the nonlinearity of the suing and damper should be known from the experimental results. In this study, the methods of system identification for nonlinear dynamic system in time domain are discussed and the nonlinear parameter estimation lot experimental data of an EF-SONATA car was done. The results show that a cubic and a coupled term should be considered to model the suspension system.

  • PDF

Feasibility study of bonding state detection of explosive composite structure based on nonlinear output frequency response functions

  • Si, Yue;Zhang, Zhou-Suo;Wang, Hong-fang;Yuan, Fei-Chen
    • Steel and Composite Structures
    • /
    • v.24 no.4
    • /
    • pp.391-397
    • /
    • 2017
  • With the increasing application of explosive composite structure in many engineering fields, its interface bonding state detection is more and more significant to avoid catastrophic accidents. However, this task still faces challenges due to the complexity of the bonding interface. In this paper, the concept of nonlinear output frequency response functions (NOFRFs) is introduced to detect the bonding state of explosive composite structure. The NOFRFs can describe the nonlinear characteristics of nonlinear vibrating system. Because of the presence of the bonding interface, explosive composite structure itself is a nonlinear system; when bonding interface of the structure is damaged, its dynamic characteristics show enhanced nonlinear characteristic. Therefore, the NOFRFs-based detection index is proposed as indicator to detect the bonding state of explosive composite pipes. The experimental results verify the effectiveness of the detection approach.

Anomalous Propagation Characteristics of an Airy Beam in Nonlocal Nonlinear Medium

  • Wu, Yun-Long;Ye, Qin;Shao, Li
    • Current Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.191-197
    • /
    • 2021
  • The anomalous propagation characteristics of a single Airy beam in nonlocal nonlinear medium are investigated by utilizing the split-step Fourier-transform method. We show that besides the normal straight propagation trajectory, the breathing solitons formed by the interaction between Airy beam and nonlocal nonlinear medium can propagate along the sinusoidal trajectory, and the anomalous trajectory can be modulated arbitrarily by altering the initial amplitude and the nonlocal nonlinear coefficient. In addition, the initial amplitude and the nonlocal nonlinear coefficient can have inverse impacts on the formation and transformation of the equilibrium state of spatial solitons, when the two parameters are larger than certain values. Therefore, the reversible transformation of the evolution dynamics of two soliton states can be realized by adjusting those two parameters properly. Finally, it is shown that the propagation properties of the solitons formed by the interaction between Airy beam and nonlocal nonlinear medium can be controlled arbitrarily, by adjusting the distribution factor and nonlocal coefficient.