• Title/Summary/Keyword: nonlinear boundary conditions

Search Result 529, Processing Time 0.026 seconds

Nonlinear bending analysis of functionally graded CNT-reinforced composite plates

  • Cho, Jin-Rae
    • Steel and Composite Structures
    • /
    • v.42 no.1
    • /
    • pp.23-32
    • /
    • 2022
  • In this paper, a nonlinear numerical method to solve the large deflection problem is introduced. And the non-dimensional load-deflection behavior of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) plates is parametrically investigated. The large deflection problem is formulated according to the von Kármán nonlinear theory and the (1,1,0)* hierarchical model, and it is approximated by 2-D natural element method (NEM). The shear locking phenomenon is suppressed by the selectively reduced integration method. The nonlinear matrix equations are solved by combining the incremental loading scheme and the Newton-Raphson iteration method. The proposed method is validated from the benchmark experiments, where the propose method shows an excellent agreement with the reference methods. The nonlinear behavior of FG-CNTRC plates is evaluated in terms of the non-dimensional load-deflection curve, and it is parametrically investigated with respect to the existence/non-existence and gradient pattern of CNTs, the width-to-thickness and aspect ratios of plates and the type of boundary conditions. The non-dimensional central deflection is significantly reduced when CNTs and added, and it decreases with the volume fraction of CNTs. But, it shows a uniform increase in proportion to the width-to-thickness and aspect ratios. Both the gradient pattern of CNTs and the type of boundary conditions do also show the remarkable effects.

Seismic Fragility Analysis by Boundary Conditions of a Two-pylon Concrete Cable-stayed Bridge (2주탑 콘크리트 사장교의 경계조건별 지진 취약도 분석)

  • Shin, Yeon-Woo;Hong, Ki-Nam;Yeon, Yeong-Mo;Ji, Sang-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.77-85
    • /
    • 2020
  • In this study, the seismic fragility curve according to the boundary conditions is created for a two-pylon concrete cable-stayed bridge, and the effect of the boundary conditions on the seismic fragility of the target bridge is evaluated. An analysis model for the target bridge is constructed using Midas Civil, and a nonlinear time history analysis is performed by applying the fiber element, concrete and rebar material models. The boundary conditions between the pylon and the stiffened girder are classified into four types: rigid, unconstrained, pot bearing, and seismic isolation bearing, and the seismic fragility curves are created for each boundary condition. The plastic hinge section of the pylon, the connection part, and the cable are selected as weak members, and the earthquake vulnerability curve is created for them. As a result of the analysis, it is found that the seismic isolation bearing model shows the lowest damage probability in the pylon and the connection part, and the seismic fragility of the cable is less affected by the boundary conditions than other members.

MIXED BOUNDARY VALUE PROBLEMS FOR SECOND ORDER DIFFERENTIAL EQUATIONS WITH DIFFERENT DEVIATED ARGUMENTS

  • Zhang, Lihong;Wang, Guotao;Song, Guangxing
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.191-200
    • /
    • 2011
  • This paper deals with second order differential equations with different deviated arguments ${\alpha}$(t) and ${\beta}$(t, ${\mu}$(t)). We investigate the existence of solutions of such problems with nonlinear mixed boundary conditions. To obtain corresponding results we apply the monotone iterative technique and the lower-upper solutions method. Two examples demonstrate the application of our results.

A Study on the Nonlinear Dynamic Behaviors of Arches due to the Change of Shapes and Boundary conditions (형상과 단부조건에 따른 아치의 비선형 동적거동)

  • 여동훈;이상호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.441-448
    • /
    • 1998
  • In this study, an explicit transient analysis program considering material and geometric nolinearities has been developed and used to analyze the dynamic behaviors of circular, parabolic, sinusoidal and catenary arches according to the change of shapes and boundary conditions. To understand dynamic behaviors of arches, first of all, the results of free vibration analysis for four kinds of arches are discussed. The results of transient analysis under impact loads we discussed in respect of boundary condition, change of height, and arch-shape. The dynamic behaviors of arches by nonlinear transient analysis considering both material and geometric nolinearities are also discussed.

  • PDF

QUADRATURE METHOD FOR EQUATIONS WITH NONLINEAR BOUNDARY CONDITIONS ARISING IN A THERMAL EXPLOSION THEORY

  • Eunkyung Ko
    • East Asian mathematical journal
    • /
    • v.39 no.3
    • /
    • pp.271-278
    • /
    • 2023
  • We consider a 1-dimensional reaction diffusion equation with the following boundary conditions arising in a theory of the thermal explosion {-u"(t) = λf(u(t)), t ∈ (0, l), -u'(0) + C(0)u(0) = 0, u'(l) + C(l)u(l) = 0, where C : [0, ∞) → (0, ∞) is a continuous and nondecreasing function, λ > 0 is a parameter and f : [0, ∞) → (0, ∞) is a continuous function. We establish the extension of Quadrature method introduced in [8]. Using this extension, we provide numerical results for models with a typical function of f and C in a thermal explosion theory, which verify the existence, uniqueness and multiplicity results proved in [6].

Numerical and experimental study on the impact between a free falling wedge and water

  • Dong, Chuanrui;Sun, Shili;Song, Hexing;Wang, Qiang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.233-243
    • /
    • 2019
  • In this paper, numerical and experimental studies are performed to investigate the liquid impact on a free falling wedge. In the numerical simulation, the structure is assumed to be rigid and the elastic response is ignored. The fully nonlinear coupling between wedge and water is considered by an auxiliary function method based on the Boundary Element Method (BEM). At the intersection of the wedge surface and liquid surface, two coincident nodes are used to decouple the boundary conditions. The Eulerian free surface conditions in the local coordinate system are adopted to update the deformed free surface. In the experiments, five pressure sensors are fixed on each side of the wedge which is released from an experimental installation. Steel and aluminum wedges that have different structural elasticity are used in the experiments to investigate the influence of structural elasticity on the impact force. Numerical results are compared with experimental data and they agree very well. The influence of fluid gravity, body mass, initial entry speed and deadrise angle on the impact pressure are further investigated.

UNIQUE POSITIVE SOLUTION FOR A CLASS OF THE SYSTEM OF THE NONLINEAR SUSPENSION BRIDGE EQUATIONS

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.16 no.3
    • /
    • pp.355-362
    • /
    • 2008
  • We prove the existence of a unique positive solution for a class of systems of the following nonlinear suspension bridge equation with Dirichlet boundary conditions and periodic conditions $$\{{u_{tt}+u_{xxxx}+\frac{1}{4}u_{ttxx}+av^+={\phi}_{00}+{\epsilon}_1h_1(x,t)\;\;in\;(-\frac{\pi}{2},\frac{\pi}{2}){\times}R,\\{v_{tt}+v_{xxxx}+\frac{1}{4}u_{ttxx}+bu^+={\phi}_{00}+{\epsilon}_2h_2(x,t)\;\;in\;(-\frac{\pi}{2},\frac{\pi}{2}){\times}R,$$ where $u^+={\max}\{u,0\},\;{\epsilon}_1,\;{\epsilon}_2$ are small number and $h_1(x,t)$, $h_2(x,t)$ are bounded, ${\pi}$-periodic in t and even in x and t and ${\parallel} h_1{\parallel}={\parallel} h_2{\parallel}=1$. We first show that the system has a positive solution, and then prove the uniqueness by the contraction mapping principle on a Banach space

  • PDF

Nonlinear resonances of nonlocal strain gradient nanoplates made of functionally graded materials considering geometric imperfection

  • Jia-Qin Xu;Gui-Lin She;Yin-Ping Li;Lei-Lei Gan
    • Steel and Composite Structures
    • /
    • v.47 no.6
    • /
    • pp.795-811
    • /
    • 2023
  • When studying the resonance problem of nanoplates, the existing papers do not consider the influences of geometric nonlinearity and initial geometric imperfection, so this paper is to fill this gap. In this paper, based on the nonlocal strain gradient theory (NSGT), the nonlinear resonances of functionally graded (FG) nanoplates with initial geometric imperfection under different boundary conditions are established. In order to consider the small size effect of plates, nonlocal parameters and strain gradient parameters are introduced to expand the assumptions of the first-order shear deformation theory. Subsequently, the equations of motion are derived using the Euler-Lagrange principle and solved with the help of perturbation method. In addition, the effects of initial geometrical imperfection, functionally graded index, strain gradient parameter, nonlocal parameter and porosity on the nonlinear forced vibration behavior of nanoplates under different boundary conditions are discussed.

Nonlinear resonance of porous functionally graded nanoshells with geometrical imperfection

  • Wu-Bin Shan;Gui-Lin She
    • Structural Engineering and Mechanics
    • /
    • v.88 no.4
    • /
    • pp.355-368
    • /
    • 2023
  • Employing the non-local strain gradient theory (NSGT), this paper investigates the nonlinear resonance characteristics of functionally graded material (FGM) nanoshells with initial geometric imperfection for the first time. The effective material properties of the porous FGM nanoshells with even distribution of porosities are estimated by a modified power-law model. With the guidance of Love's thin shell theory and considering initial geometric imperfection, the strain equations of the shells are obtained. In order to characterize the small-scale effect of the nanoshells, the nonlocal parameter and strain gradient parameter are introduced. Subsequently, the Euler-Lagrange principle was used to derive the motion equations. Considering three boundary conditions, the Galerkin principle combined with the modified Lindstedt Poincare (MLP) method are employed to discretize and solve the motion equations. Finally, the effects of initial geometric imperfection, functional gradient index, strain gradient parameters, non-local parameters and porosity volume fraction on the nonlinear resonance of the porous FGM nanoshells are examined.

Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations

  • Akgoz, Bekir;Civalek, Omer
    • Steel and Composite Structures
    • /
    • v.11 no.5
    • /
    • pp.403-421
    • /
    • 2011
  • In the present manuscript, geometrically nonlinear free vibration analysis of thin laminated plates resting on non-linear elastic foundations is investigated. Winkler-Pasternak type foundation model is used. Governing equations of motions are obtained using the von Karman type nonlinear theory. The method of discrete singular convolution is used to obtain the discretised equations of motion of plates. The effects of plate geometry, boundary conditions, material properties and foundation parameters on nonlinear vibration behavior of plates are presented.