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QUADRATURE METHOD FOR EQUATIONS WITH

NONLINEAR BOUNDARY CONDITIONS ARISING IN A

THERMAL EXPLOSION THEORY

Eunkyung Ko∗

Abstract. We consider a 1-dimensional reaction diffusion equation with

the following boundary conditions arising in a theory of the thermal ex-
plosion 

−u′′(t) = λf(u(t)), t ∈ (0, l),

−u′(0) + C(0)u(0) = 0,

u′(l) + C(l)u(l) = 0,

where C : [0,∞) → (0,∞) is a continuous and nondecreasing function,

λ > 0 is a parameter and f : [0,∞) → (0,∞) is a continuous function. We

establish the extension of Quadrature method introduced in [8]. Using this
extension, we provide numerical results for models with a typical function

of f and C in a thermal explosion theory, which verify the existence,

uniqueness and multiplicity results proved in [6].

1. Introduction

A typical model in combustion theory is the problem of thermal explosion
which is spontaneous iginition of a rapid combustion process. The model reads
as:  Tt −∆T = λf(T ), (t, x) ∈ (0,∞)× Ω,

n · ∇T + C(T )T = 0 (t, x) ∈ (0,∞)× ∂Ω,
T (0, x) = 0, x ∈ ∂Ω.

(1)

Here, T is an appropriately normalized temperature distribution in a bounded
domain Ω ⊂ Rn, n ≥ 1. The most common example of chemical reaction term
is Arrhenius law in which case f(T ) = exp( αT

α+T ), where the parameter α > 0

(usually large) is a scaled activation energy. The parameter λ > 0 is a scaling
parameter and can be associated with the size of the domain Ω which grows
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as λ increases. The heat-loss conditions are imposed on a boundary ∂Ω with
outward normal n, where the heat loss parameter C(T ) is assumed that C :
[0,∞) → (0,∞) is a continuous and non decreasing function. Physically this
assumption means that the heat loss through the boundary is always present
and increases for higher temperatures. Further, initial normalized temperature
is assumed to be equal to the one of the surrounding which is set to be equal to
zero. It is well known the long time behavior of solutions for the problem (1) is
fully determined by its stationary solutions, which is solutions of the following
problem {

−∆u = λf(u), x ∈ Ω,
n · ∇u+ C(u)u = 0, x ∈ ∂Ω.

(2)

In the literature, existence, uniqueness and multiplicity of reaction diffusion
equations with various reaction term f were studied quite extensively (see [1]-
[5],[7]-[11]) under either Dirichlet boundary condition or nonlinear boundary
condition.

In this paper, we consider the following one-dimensional model of (2):
−u′′(t) = λf(u(t)), t ∈ (0, l),

−u′(0) + C(0)u(0) = 0,

u′(l) + C(l)u(l) = 0,

(3)

where λ is a positive parameter, l is a positive constant, C : [0,∞) → (0,∞) is
a continuous and nondecreasing function and f : [0,∞) → (0,∞) is a contin-
uous function. To investigate bifurcation diagrams of problems with nonlinear
boundary conditions like (3), we first establish an extension of the Quadrature
method introduced in [8]. To state our main result, we define F (u) =

∫ u

0
f(s) ds.

Theorem 1.1. If uλ is a positive solution of (3) with ∥uλ∥∞ = ρ, then

√
λ =

√
2

l

∫ ρ

mρ

ds√
F (ρ)− F (s)

, (4)

where for each ρ ∈ (0,∞), mρ ∈ (0, ρ) is the unique solution of

C(m)m√
2(F (ρ)− F (m))

=

√
2

l

∫ ρ

m

ds√
F (ρ)− F (s)

. (5)

Conversely, if for each ρ > 0 there exist λ > 0 and mρ ∈ (0, ρ) satisfying (4) and
(5), then (3) has a positive solution uλ with ∥uλ∥∞ = ρ and uλ(0) = mρ = uλ(l).

This paper is organized as follows: Section 2 is devoted to the proof of
Theorem 1.1. In Section 3, we recall some existence, uniqueness and multiplicity
results of (2) related to our problem (3). In Section 4, we provide numerical

simulations of the bifurcation diagram for the problem when f(u) = e
αu

α+u and
C(u) = 1−a

a + 1
au. This verifies numerically the results introduced in Section 3.
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2. Proof of Theorem 1.1

Let u be a positive solution of (3). Now multiplying (3) by u′, we have

−u′′(t)u′(t) = λf(u(t))u′(t), t ∈ (0, l),

and so
d

dt

[
1

2
u′(t)2 + λF (u(t))

]
= 0, t ∈ (0, l).

Hence
1

2
u′(t)2 + λF (u(t)) = constant, t ∈ [0, l].

Since u′′(t) < 0 in (0, l), there exists a unique t0 ∈ (0, l) such that u′(t) > 0
in [0, t0), u

′(t) < 0 in (t0, l] and u′(t0) = 0. Since u′(t0) = 0, the constant is
determined by λF (ρ). Hence, we have

u′(t)2 = 2λ(F (ρ)− F (u(t))), t ∈ [0, l], (6)

where ρ := ∥u∥∞ = u(t0). We first claim that t0 = l
2 . Since the differential

equation in (3) is autonomous, the solution has to be symmetric about t0.
Hence, it is sufficient to show that u(0) = u(l). From (6) and the boundary
conditions in (3), we easily see that u(0) and u(l) are zeros of the function

g(x) := C(x)2x2 − 2λ(F (ρ)− F (x)).

But the function g(x) is increasing for x ≥ 0, and hence we have u(0) = u(l).
Thus, u is symmetric about t = l

2 , u
′(t) > 0 in [0, l

2 ), u
′(t) < 0 in ( l

2 , l] and

u′( l
2 ) = 0. Now let m := u(0) = u(l) and we rewrite (6) as follows:

√
λ =

u′(t)√
2(F (ρ)− F (u(t)))

, t ∈ [0,
l

2
). (7)

Applying the boundary condition at t = 0 to (7), we obtain

√
λ =

C(m)m√
2(F (ρ)− F (m))

and integrating (7) from 0 to l
2 , we have

√
λ =

√
2

l

∫ ρ

m

ds√
F (ρ)− F (s)

. (8)

Hence we see that m and ρ must be related by

H(m) :=
C(m)m√

2(F (ρ)− F (m))
=

√
2

l

∫ ρ

m

ds√
F (ρ)− F (s)

:= G(m). (9)

It is easy to see that H increases from 0 to ∞ while G decreases from a positive
value to zero as m increases from 0 to ρ. This means that for each ρ ∈ (0,∞)
there exists a unique mρ ∈ (0, ρ) which satisfies (9) (see Figure 1). Now using
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Figure 1. H(m) increases in [0, ρ) and G(m) decreases in [0, ρ]

this mρ ∈ (0, ρ), we obtain from (8) the relation:

√
λ =

√
2

l

∫ ρ

mρ

ds√
F (ρ)− F (s)

.

Conversely, for each given ρ > 0, if there exists λ > 0 that satisfies (4)
and (5), one can backtrack to show that (3) has a positive solution uλ of the
form in Figure 2. Let ρ ∈ (0,∞) be fixed arbitrarily. Then there exists a

uλ

mρ

ρ

0 l
2

l

Figure 2. Positive solution of (3)

unique mρ ∈ (0, ρ) satisfying (5). For such a mρ(=: m) we define a function
L : [m, ρ] → R by

L(u) =

∫ u

m

ds√
F (ρ)− F (s)

.
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Note that L(u) is increasing on (m, ρ) as L′(u) = 1√
F (ρ)−F (u)

> 0 in (m, ρ).

Hence, the minimum of L(u) is L(m) = 0 and the maximum is L(ρ). Here we
see that

L(ρ) =

∫ ρ

m

ds√
F (ρ)− F (s)

= l

√
λ

2
(10)

by (4). Now, we claim that there exists a unique function u : [0, l
2 ) → [m, ρ)

such that

L(u(x)) :=

∫ u(x)

m

ds√
F (ρ)− F (s)

=
√
2λx.

Let us define J : [0, l
2 )× [m, ρ) → R by

J(x, u) =

∫ u

m

ds√
F (ρ)− F (s)

−
√
2λx. (11)

Then, there exists (x0, u0) := (0,m) ∈ [0, l
2 ) × [m, ρ) such that J(x0, u0) = 0.

Note that J ∈ C1 and Ju(x0, u0) ̸= 0 as Ju = 1√
F (ρ)−F (u)

> 0. Hence, Implicit

Function Theorem yields that there exists a unique u ∈ C1 function such that
J(x, u(x)) = 0 for x ∈ [0, l

2 ) with u(0) = m. From (10), we define u( l
2 ) = ρ.

Now, we rewrite (11) as∫ u(x)

m

ds√
F (ρ)− F (s)

=
√
2λx, x ∈ [0,

l

2
). (12)

Differentiating (12) with respect to x, we have

u′(x)√
2(F (ρ)− F (u(x)))

=
√
λ, x ∈ [0,

l

2
), (13)

which is written as

u′(x) =
√
2λ(F (ρ)− F (u(x))), x ∈ [0,

l

2
). (14)

Differentiating it again, it follows that

−u′′(x) = λf(u(x)), x ∈ [0,
l

2
).

Next, from (4), (5) and (13) with x = 0, we obtain that

C(m)m√
2(F (ρ)− F (m))

=
u′(0)√

2(F (ρ)− F (u(0)))
,

which implies that the boundary condition −u′(0)+C(u(0))u(0) = 0 is satisfied.

Since u′(x) =
√
2λ(F (ρ)− F (u(x))) > 0 in (14), u is increasing on [0, l

2 ).

From u( l
2 ) = ρ and (14), we define u′( l

2 ) = 0. Note that the solution of (3) is

symmetric about x = l
2 . Now, we define u(x) in ( l

2 , l] such that u(x) = u(l− x)

for all x ∈ ( l
2 , l] Then, there exists a positive solution uλ with ∥u∥∞ = ρ of (3)

satisfying (4) and (5).
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3. Known results

In this section, we recall some results concerning existence, uniqueness and
multiplicity of solutions for the problem (2) established in [6].

Theorem 3.1. The boundary vlaue problem (2) has a positive solution for all
λ > 0. Moreover, if s

f(s) is increasing on [0,∞), then this solution is unique for

any λ > 0.

Let e ∈ C2(Ω) be the unique solution of the following linear elliptic problem{
−∆e = 1, x ∈ Ω,
n · ∇e+ c0e = 0, x ∈ ∂Ω,

where c0 = C(0). Let us denote Q(p, q) := pf(q)
qf(p) for any 0 < p < q.

Theorem 3.2. Assume that there exist 0 < p∗ < q∗ such that

Q(p∗, q∗) >
(N + 1)N+1

NN−1

||e||∞
R2

,

where R is the radius of largest ball inscribed in Ω in RN . Then, (2) has at least
three positive solutions provided λ1 < λ < λ2 where

λ1 =
q∗

f(q∗)

(N + 1)N+1

R2NN−1
, λ2 =

p∗

f(p∗)

1

||e||∞
.

Remark 1. In the case when f(s) = e
αs

α+s , if choosing p∗ = 1 and q∗ = α, we
have

Q(p∗, q∗) =
1

α
exp

(
α2

2(α+ 2)

)
(15)

and therefore Q(p∗, q∗) can be arbitrary large for large enough α.

Λ1 Λ2
Λ

°u´¥

Figure 3. S-shaped bifurcation diagram for (2) showing the
results of Theorem 3.1 and 3.2
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4. Computational results

Here we consider a 1-dimensional thermal explosion model when Ω = (0, λ2),
f(u) = exp( αu

α+u ) and C(u) = 1−a
a + 1

au, where α > 0 and 0 < a < 1. In
particular, we study the boundary value problem

−u′′(t) = λ exp
(

αu
α+u

)
, t ∈ (0, λ2),

−u′(0) +
(
1−a
a + 1

au(0)
)
u(0) = 0,

u′(λ2) +
(
1−a
a + 1

au(λ
2)
)
u(λ2) = 0,

(16)

where λ > 0 is a positive parameter.
Now we provide numerical results of bifurcation diagram which show the

existence, uniqueness and multiplicity when the parameter λ changes. Here
we plot bifurcation curves via Quadrature method obtained in Theorem 1.1
using Mathematica. We consider the bifurcation diagrams for the case when
f(u) = exp( αu

α+u ) for various values of α. Figure 4 shows that λ is an increasing
function of ρ when 0 < α < 4 and 0 < a < 1. This is expected since if 0 < α < 4,
then u

f(u) = u
exp[ αu

α+u ] is increasing for all u ≥ 0, and by Theorem 3.1, (16) has

a unique solution for all λ > 0.

a=0.999

a=0.5 a=0.1

a=0.001
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Ρ

Figure 4. Bifurcation curve for certain values of a ∈ (0, 1)
when α = 3

In Figure 5, bifurcation diagrams are provided when 4 ≤ α ≤ 6. For 4 ≤ α ≤ 5.2,
the bifurcation curve of (16) is S-shaped for a ≈ 0, while λ is an increasing
function of ρ for a ≈ 1. However, when α = 6, we see that the bifurcation
curves of (16) are S-shaped for all values of a ∈ (0, 1) as in Remark 1.
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Figure 5. The critical value of λ corresponding to the case
with the heat loss (a ≈ 1) is significantly lower than those
corresponding to cold boundary condition(a ≈ 0).
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