DOI QR코드

DOI QR Code

MIXED BOUNDARY VALUE PROBLEMS FOR SECOND ORDER DIFFERENTIAL EQUATIONS WITH DIFFERENT DEVIATED ARGUMENTS

  • Zhang, Lihong (School of Mathematics and Computer Science, Shanxi Normal University) ;
  • Wang, Guotao (School of Mathematics and Computer Science, Shanxi Normal University) ;
  • Song, Guangxing (Department of Mathematics, China University of Petroleum)
  • Received : 2010.03.25
  • Accepted : 2010.07.05
  • Published : 2011.01.30

Abstract

This paper deals with second order differential equations with different deviated arguments ${\alpha}$(t) and ${\beta}$(t, ${\mu}$(t)). We investigate the existence of solutions of such problems with nonlinear mixed boundary conditions. To obtain corresponding results we apply the monotone iterative technique and the lower-upper solutions method. Two examples demonstrate the application of our results.

Keywords

References

  1. G. Wang, Boundary value problems for systems of nonlinear integro-differential equations with deviating arguments, J. Comput. Appl. Math., 234 (2010) 1356-1363. https://doi.org/10.1016/j.cam.2010.01.009
  2. G. Wang, G. Song, L. Zhang, Integral boundary value problems for first order integro-differential equations with deviating arguments, J. Comput. Appl. Math., 225 (2009) 602-611. https://doi.org/10.1016/j.cam.2008.08.030
  3. T. Jankowski, Solvability of three point boundary value problems for second order differential equations with deviating arguments, J.Math. Anal. Appl. 312 (2005) 620-636. https://doi.org/10.1016/j.jmaa.2005.03.076
  4. T. Jankowski, Monotone method for second-order delayed differential equations with boundary value conditions, Appl. Math. Comput. 149 (2004) 589-598. https://doi.org/10.1016/S0096-3003(03)00166-8
  5. T. Jankowski, Differential equations with integral boundary conditions, J. Comput. Appl. Math. 147 (2002) 1-8. https://doi.org/10.1016/S0377-0427(02)00371-0
  6. T. Jankowski, Existence of solutions of boundary value problems for differential equations with delayed arguments, J. Comput. Appl. Math. 156 (2003) 239-252. https://doi.org/10.1016/S0377-0427(02)00916-0
  7. W. Wang, X. Yang, J. Shen, Boundary value problems involving upper and lower solutions in reverse order, J. Comput. Appl. Math. 230 (2009), 1-7. https://doi.org/10.1016/j.cam.2008.10.040
  8. J.J. Nieto, R. Rodriguez-Lopez, Existence and approximation of solutions for nonlinear differential equations with periodic boundary value conditions, Comput. Math. Appl 40 (2000), 433-442. https://doi.org/10.1016/S0898-1221(00)00171-1
  9. J.J. Nieto, R. Rodriguez-Lopez, Remarks on periodic boundary value problems for functional differential equations, J. Comput. Appl. Math. 158 (2003), 339-353. https://doi.org/10.1016/S0377-0427(03)00452-7
  10. W. Wang, J. Shen, Z. Luo, Multi-point boundary value problems for second-order functional differential equations, Comput. Math. Appl., 56 (2008) 2065-2072. https://doi.org/10.1016/j.camwa.2008.02.048
  11. R.P. Agarwal, D. ORegan, P.J.Y. Wong, Positive Solutions of Differential, Difference and Integral Equations, Kluwer Academic Publishers, Dordrecht, 1999.
  12. G.S. Ladde, V. Lakshmikantham, A.S. Vatsala, Monotone Iterative Techniques for Nonlinear Differential Equations, Pitman, Boston, 1985.
  13. S. W. Du, V. Lakshmikantham, Monotone iterative technique for differential equations in Banach spaces, J. Math. Anal. Appl., 87(1982) 454-459. https://doi.org/10.1016/0022-247X(82)90134-2
  14. W. Szatanik, Quasi-solutions for generalized second order differential equations with deviating arguments, J. Comput. Appl. Math. 216 (2008) 425-434. https://doi.org/10.1016/j.cam.2007.05.028
  15. K.Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.
  16. T.A. Burton, Differential inequalities for integral and delay differential equations, in: Xinzhi Liu, David Siegel (Eds.), Comparison Methods and Stability Theory, in: Lecture Notes in Pure and Appl. Math., Dekker, New York, 1994.