• Title/Summary/Keyword: nonlinear algorithm

Search Result 2,786, Processing Time 0.03 seconds

Approximate analyses of reinforced concrete slabs

  • Vecchio, F.J.;Tata, M.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.1
    • /
    • pp.1-18
    • /
    • 1999
  • Procedures are investigated by which nonlinear finite element shell analysis algorithms can be simplified to provide more cost effective approximate analyses of orthogonally-reinforced concrete flat plate structures. Two alternative effective stiffness formulations, and an unbalanced force formulation, are described. These are then implemented into a nonlinear shell analysis algorithm. Nonlinear geometry, three-dimensional layered stress analyses, and other general formulations are bypassed to reduce the computational burden. In application to standard patch test problems, these simplified approximate analysis procedures are shown to provide reasonable accuracy while significantly reducing the computational effort. Corroboration studies using various simple and complex test specimens provide an indication of the relative accuracy of the constitutive models utilized. The studies also point to the limitations of the approximate formulations, and identify situations where one should revert back to full nonlinear shell analyses.

A new approach for nonlinear finite element analysis of reinforced concrete structures with corroded reinforcements

  • Shayanfar, Mohsen A.;Safiey, Amir
    • Computers and Concrete
    • /
    • v.5 no.2
    • /
    • pp.155-174
    • /
    • 2008
  • A new approach for nonlinear finite element analysis of corroded reinforcements in RC structures is elaborated in the article. An algorithmic procedure for producing the tension-stiffening curve of RC elements taking into consideration most of effective parameters, e.g.: the rate of steel bar corrosion, bond-slip behavior, concrete cover and amount of reinforcement, is illustrated. This has been established on both experimental and analytical bases. This algorithm is implemented into a nonlinear finite element analysis program. The abilities of the resulted program have been studied by modeling some experimental specimens showing a reasonable agreement between the analytical and experimental findings.

A Study on the Nonlinear and Linear Analysis of Microwave Diode Mixer (마이크로波 다이오드 混合器의 非線形 및 線形解析에 關한 硏究)

  • Park, Eui-Joon;Park, Cheong-Kee
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.4
    • /
    • pp.7-15
    • /
    • 1989
  • A technique is suggested which enables the large signal current and voltage waveforms to be determined for a GaAs Schottky-Barrier diode mixer by extracting the algorithm for the nonlinear circuit analysis from the Gauss-Jacobi relaxation and the application of the Harmonic Balance Technique. Both the nonlinear and linear steps of the analysis are included. This analysis permitts accurate determination of the conversion loss for microwave mixer and the computer simulation provides an method applicable to MMIC design. The validity of the nonlinear and linear analysis is confirmed by comparing the simulation results with experimental data of the conversion loss.

  • PDF

Design Sensitivity Analysis and Topology Optimization of Geometrically Nonlinear Structures (기하학적 비선헝 구조물의 설계 민감도해석 및 위상최적설계)

  • Cho, Seonho;Jung, Hyunseung;Yang, Youngsoon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.335-342
    • /
    • 2002
  • A continuum-based design sensitivity analysis (DSA) method fur non-shape problems is developed for geometrically nonlinear elastic structures. The non-shape problem is characterized by the design variables that are not associated with the domain of system like sizing, material property, loading, and so on. Total Lagrangian formulation with the Green-Lagrange strain and the second Piola-Kirchhoff stress is employed to describe the geometrically nonlinear structures. The spatial domain is discretized using the 4-node isoparametric plane stress/strain elements. The resulting nonlinear system is solved using the Newton-Raphson iterative method. To take advantage of the derived analytical sensitivity In topology optimization, a fast and efficient design sensitivity analysis method, adjoint variable method, is employed and the material property of each element is selected as non-shape design variable. Combining the design sensitivity analysis method and a gradient-based design optimization algorithm, an automated design optimization method is developed. The comparison of the analytical sensitivity with the finite difference results shows excellent agreement. Also application to the topology design optimization problem suggests a very good insight for the layout design.

  • PDF

Improvement of Newton-Raphson Iteration Using ELS (강성등가하중을 이용한 Newton-Raphson Iteration 개선)

  • Kim, Chee-Kyeong;Hwang, Young-Chul
    • Proceeding of KASS Symposium
    • /
    • 2006.05a
    • /
    • pp.170-174
    • /
    • 2006
  • This paper presents a new nonlinear analysis algorithm which uses the equivalent nodal load for the element stiffness. The equivalent nodal load represents the influence of the stiffness change such as the addition of elements, the deletion of elements, and/or the partial change of element stiffness. The nonlinear analysis of structures using the equivalent load improves the efficiency very much because the inverse of the structural stiffness matrix, which needs a large amount of computation to calculate, is reused in each loading step. In this paper, the concept of nonlinear analysis using the equivalent load for the element stiffness is described and some numerical examples are provided to verify it.

  • PDF

A Study on the Nonlinear Dynamics of PR Interval Variability Using Surrogate data

  • Lee, J.M.;Park, K.S.;Shin, I.S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.27-30
    • /
    • 1996
  • PR interval variability has been proposed as a noninvasive tool for in-vestigating the autonomic nervous system as welt as heart rate variability. The goal of this paper is to determine whether PR interval variability is generated from deterministic nonlinear dynamics. The data used in this study is a 24-hour bolter ECGs of 20 healthy adults. We developed an automatic PR interval measurement algorithm, and tested it using MIT ECG Databases. The general discriminants of nonlinear dynamics, such as, correlation dimension and phase space reconstruction are used. Surrogate data is generated from simpler linear models to have similar statistical characteristics with the original data. Nonlinear discriminants are applied to both data, and compared for any significant results. It was concluded that PR interval variability shows non-linear characteristics.

  • PDF

Optimization of fuzzy controller for nonlinear buildings with improved charged system search

  • Azizi, Mahdi;Ghasemi, Seyyed Arash Mousavi;Ejlali, Reza Goli;Talatahari, Siamak
    • Structural Engineering and Mechanics
    • /
    • v.76 no.6
    • /
    • pp.781-797
    • /
    • 2020
  • In recent years, there is an increasing interest to optimize the fuzzy logic controller with different methods. This paper focuses on the optimization of a fuzzy logic controller applied to a seismically excited nonlinear building. In most cases, this problem is formulated based on the linear behavior of the structure, however in this paper, four sets of objective functions are considered with respect to the nonlinear responses of the structure as the peak interstory drift ratio, the peak level acceleration, the ductility factor and the maximum control force. The Improved Charged System Search is used to optimize the membership functions and the rule base of the fuzzy controller. The obtained results of the optimized and the non-optimized fuzzy controllers are compared to the uncontrolled responses of the structure. Also, the performance of the utilized method is compared with various classical and advanced optimization algorithms.

Asymptotic Output Tracking of Non-minimum Phase Nonlinear Systems through Learning Based Inversion (학습제어를 이용한 비최소 위상 비선형 시스템의 점근적 추종)

  • Kim, Nam Guk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.8
    • /
    • pp.32-42
    • /
    • 2022
  • Asymptotic tracking of a non-minimum phase nonlinear system has been a popular topic in control theory and application. In this paper, we propose a new control scheme to achieve asymptotic output tracking in anon-minimum phase nonlinear system for periodic trajectories through an iterative learning control with the stable inversion. The proposed design method is robust to parameter uncertainties and periodic external disturbances since it is based on iterative learning. The performance of the proposed algorithm was demonstrated through the simulation results using a typical non-minimum nonlinear system of an inverted pendulum on a cart.

An estimation technique for nonlinear distortion in high-density magnetic recording channels (고밀도 자기 기록 채널의 비선형 왜곡 추정 기법)

  • 이남진;오대선;조용수;김기호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.11
    • /
    • pp.2439-2450
    • /
    • 1997
  • As recording densities increase in digital magnetic recording channels, the performances of digital detection techniques such as PRML and DFE degrade significantly due to nonlinear distortion in recording channels. The primary impediments for hgih-density recording are generally classified as nonlinear transition shift, which can be reduced substantially by the precompensation technique, and partial erasure which usually requires sophisticated nonlinear equalization techniques. In order to acheieve the highest density recording, accurate estimation of the parameters associated with these two noninear distortions is crucial. In this paper, a new estimation technique to distinguish these two different nonlinear effect using a proposed adaptive algorithm in time domain is presented. The effectiveness of the proposed adaptive approach to identify uniquely the nonlinear parameter with bias is demonstrated by computer simulation.

  • PDF

Fully nonlinear inelastic analysis of rectangular CFST frames with semi-rigid connections

  • Bui, Van-Tuong;Vu, Quang-Viet;Truong, Viet-Hung;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.497-521
    • /
    • 2021
  • In this study, an effective numerical method is introduced for nonlinear inelastic analyses of rectangular concrete-filled steel tubular (CFST) frames for the first time. A steel-concrete composite fiber beam-column element model is developed that considers material, and geometric nonlinearities, and residual stresses. This is achieved by using stability functions combined with integration points along the element length to capture the spread of plasticity over the composite cross-section along the element length. Additionally, a multi-spring element with a zero-length is employed to model the nonlinear semi-rigid beam-to-column connections in CFST frame models. To solve the nonlinear equilibrium equations, the generalized displacement control algorithm is adopted. The accuracy of the proposed method is firstly verified by a large number of experiments of CFST members subjected to various loading conditions. Subsequently, the proposed method is applied to investigate the nonlinear inelastic behavior of rectangular CFST frames with fully rigid, semi-rigid, and hinged connections. The accuracy of the predicted results and the efficiency pertaining to the computation time of the proposed method are demonstrated in comparison with the ABAQUS software. The proposed numerical method may be efficiently utilized in practical designs for advanced analysis of the rectangular CFST structures.