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ABSTRACT

PR interval variability has been
proposed as a noninvasive tool for in-
vestigating the autonomic nervous sys-
tem as well as heart rate variability.
The goal of this paper is to determine
whether PR interval variability is gen-
erated from deterministic nonlinear dy-
namics. . The data used in this study
is a 24-hour holter ECGs of 20 healthy
adults. We developed an automatic PR
interval measurement algorithm, and
tested it using MIT ECG Databases.
The general discriminants of nonlinear
dynamics, such as, correlation dimen-
sion and phase space reconstruction are
used. Surrogate data is generated from
simpler linear models to have similar
statistical characteristics with the orig-
inal data. Nonlinear discriminants are
applied to both data, and compared for
any significant results. It was concluded
that PR interval variability shows non-
linear characteristics.

1 Introduction

Heart rate variability(HRV) has been used to
estimate the activity of the autonomic nervous
system(ANS) as a noninvasive method. Many
studies report that HRV shows determinis-
tic nonlinear dynamics(l]. Sympathetic and
parasympathetic nervous system directly influ-
ences the SA node, and results in HRV. In the
same way, two components directly influences the
AV node. Therefore, AV node conduction time
can be used as another noninvasive parameter to
estimate the activity of ANS.

PR interval is composed of atrium acti-
vation time, AV node conduction time, and

His-Purkinje condtion time. AV node conduction
is much slower than others, and the dominant
component of PR interval. Because it is difficult
to detect AV conduction time, it is important to
study PR interval variability(PRV). Since PRV
is influenced by the same mechanism of HRV, it
is possible that PRV has deterministic nonlinear
dynamics. If it is true, it can be used as a proof
of nonlinear dynamics of HRV. The purpose of
this study is to determine whether PRV shows
deterministic nonlinear dynamics.

First, the accurate detection of PR interval
is important. In definition, PR interval is the
time from the P wave start point to the R wave
start point. The R wave has a relatively large
amplitude, and is easily detected. But, in the
case of the P wave, it is difficult to detect the
starting point accurately. Therefore, we assume
the P wave peak point is used to represent the
PR interval instead of the P wave start point.
That assumption is based on the fact that AV
conduction time is what we want to see, and that
AV conduction time is the major component
of PRV. That asumption is also necessary to
analyze 24 hour holter ECG data, because we
should use computer-aid automatic detection
algorithm to process a very large amount of data.

To determine nonlinear characterisitcs of
PRV, correlation dimension and phase space
reconstruction are calculated. Those are general
methods to see nonlinear characterisitics of the
data quantitatively. Embedding dimension and
time delay are necessary to calculate those re-
sults, but, have not been solved to have optimum
values yet. Therefore, in this study, we tried to
find out the best results among various values
of two parameters. Takens estimator is used to
calculate the correlation dimension(2].

It was suggested to detect nonlinearty
in time series using surrogate data[3). This
method is to discriminate between deterministic
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nonlinear dynamics and noise from a time series.
The surrogate data is generated from simpler
models to have similar statistical characteristics
to the original data. If the surrogate data shows
the same values in the nonlinear discriminants
with the original data, the original data is not
supposed to be from a deterministic nonlinear
dynamics.

2 Methods

2.1 Materials and ECG preprocess-
ing

24 hour Holter ECG data of 20 healthy adults
are acquired to test nonlinearty of PRV.

We recorded data in the personal computer
(486 IBM PC) through A/D converter (12 bit res-
olution) from Holter system. The holter system
has analog output option which is 60 times faster
than normal speed, and acquired ECG data at
60KHz sampling rate. In effect, we sampled the
data at 1IKHz. All the signal processing are pro-
cessed off line.

First, QRS-complex detection is executed.
For accurate detection, ECG data is low pass fil-
tered(cufoff frequency = 11Hz) and high pass fil-
tered (cufoff frequency = 200Hz). The algortihm
to detect QRS complex is using first derivative of
ECG signals, the square of that first derivative,
and moving window integrations. -

Second, P wave detection is executed.
P waves are sometimes independent of QRS-
complexes, but since the object of this study is
to find out AV node conduction time’s variabil-
ity, it is assumed that all P waves are in front of
QRS complexes. Therefore, to find P wave, we set
some fixed interval in front of the QRS complex,
and compare the amplitude and first derivative
of the ECG signals in the interval. We tested
this algorithm with MIT ECG Database, and it
had been concluded that little significant errors
took place.

2.2 Nonlinearity Detecting meth-
ods

correlation dimension According to
Takens embedding theorem, if X, is a discrete-
time scalar cross-section across a continuous-time
multidimensional system with an attractor con-
tained in a manifold of dimension I, there will be
in general an embedding dimension J < 2T +1
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Figure 1: Automatically detected PR Interval

such that the J— vectors X,,_1,...,X,_; fill out
a set of the same dimension with the underlying
attractor.

Using that theorem, Grassberger and Pro-
caccia suggested correlation dimension, and es-
timated it by a procedure based on nearest-
neighbor distances[4]. Most of the literature
about the dimension estimation are based on this
procedure because of its ease of estimation.
Suppose the observations Y,,,1 < n < N are inde-
pendent, identically distributed p— vectors with
twice continuously differentiable density f. Let
Dyn = ||Ym — Yall, and,

C(r) = Pr{Dpp < r}=ar?{1+br" +0(r")} (1)

where, a and b are constants and, C(r) is the
correlation integral. Assume N(N —1)/2 D’s are
independent, and

C(r)=arf,r <e (2)

for some small (assumed known) ¢, and, p is the
correlation dimension.

Suppose that we order the D’s as D1 < D, <
... < Dy(n-1)/2 and that the first M of these are
less than ¢. Takens maximum likelihood estima-
tion is

M

> log(%)

And the mean squared error(MSE), or the
sum of squared bias and variance, is :

p= ®3)

2%, 2P
MSE ~ (m )6 + Niger (4)
The sample size which is needed to calculate
the p value grows exponentially with p. But be-
ing dependent on the MSE value, the sample size
can be decreased, provided the MSE value is in-
creased[5).
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Phase space reconstruction It is very
useful to make a time delay reconstruction of a
phase space to represent the nonlinear dynamics
visually. Many methods are suggested to deter-
mine time delay and embedding dimension, But
currently it is not clear in real data. Those meth-
ods include first zero-crossing of the autocorrela-
tion function, mutual information, and false near-
est neighbors, etc.

We followed false nearest neighbors algo-
rithm, because that algorithm gives better results
than others that were tried[6].

2.3 Surrogate data

Surrogate data is an ensemble of data sets
similar to the observed data, but consistent with
the null hypothesis. There are some possibili-
ties to select null hypothesis to generate surrogate
data. The algorithm used in this study is based
on the null hypothesis that the data come from
a linear gaussian process. The surrogate data is
generated to have the same Fourier spectrum as
the original data.

To achieve this goal, Fourier transform of
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Figure 2: Power Spectrum of the PRV

Figure 3: Power Spectrum of the Surrogate Data

the original data is computed. Second, random-
ize the coefficients by multiply e**!, where ¢[t] is
uniformly distributed in [0, 2II]. We symmetrize
the phases 7(f) = —w(—f). Finally, the inverse
fourier transform calculated is the surrogate data.
Note that by the symmetry of the phases, the re-
sulting time series are real.

3 results

Figure 1 shows the automatically detected PR
interval of ECG data.

Figure 2 shows the power spectrum of the
PRV data, and figure 3 shows the power spec-
trum of the surrogate data.

Figure 4 shows the time series of the PRV
data, and figure 5 shows the time series of the
surrogate data.

From the figure 2 - 5, we see that the surro-

Figure 5: Time series of the Surrogate data

gate data follows the powerspectrum of the orig-
inal PRV data, but is generated from the lineary
correlated models.

Table 1 shows the means and variances of the
correlation dimensions of the original PR interval
and its surrogate data. The correlation dimen-
sion of the original data is different from that of
the surrogate data.

We can conclude that at least PRV is not
generated from the linearly correlated models.

Table 1: Mean and S.D of correlation dimensions
between PRV and surrogate data

[ [ Mean | S.D. |
PRV data 2.1 | 035
Surrogate data 1.7 | 041
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4 conclusion and discussion

We have concluded that the PRV shows non-
linear characteristics. It means that AV node con-
duction time has nonlinearty, and is determined
by the deterministic interaction of sympathetic
and parasympathetic nervous system. Therefore,
we hope that combined with HRV, PRV can be
used as a indicator to show heart’s states.

It is clear that at least PRV can not be gener-
ated from linear correlated models from the study
of the surrogate data.

More discriminants, such as Lyapunov ex-
ponent, prediction error, are needed to reveal
the nonlinearty accurately. A further study of
theoretical background about nonlinear discrim-
inants’ parameters for the biological signals are
necessary.
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