• Title/Summary/Keyword: nonlinear acoustic effect

Search Result 47, Processing Time 0.02 seconds

Analysis of Total Harmonic Distortion in Microspeaker Considering Coupling Effect (연성 효과를 고려한 마이크로스피커 왜율분석)

  • Kwon, Joong-Hak;Kim, Kwang-Suk;Bang, Ki-Chang;Hwang, Sang-Moon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.4
    • /
    • pp.473-479
    • /
    • 2008
  • With the advent of mobile phone, digital multimedia broadcasting(DMB) service is to be realized for multimedia data communication. For an acoustic part, a smaller and lighter microspeaker is also soon to be realized as an MP3 song player and a speakerphone. Sound quality in the microspeaker is becoming more important in mobile phones. It is evaluated by total harmonic distortion(THD). THD is the proportion of higher order frequencies output response to sinusoidal input signal. It is affected by uneven magnetic distribution and nonlinear response of diaphragm. In this paper, harmonic distortion is analyzed by considering magnetic and mechanical coupling effects. Simulated results of THD are compared with experimental data. Results show that THD in lower frequency range is higher due to high displace on voice coil and high mechanical response of high order frequency.

Analysis of total harmonic distortion in microspeaker considering coupling effect (연성 효과를 고려한 마이크로스피커 왜율분석)

  • Kwon, Joong-Hak;Kim, Kwang-Suk;Bang, Ki-Chang;Hwang, Sang-Moon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.236-241
    • /
    • 2008
  • With the advent of mobile phone, Digital multimedia broadcasting (DMB) service is to be realized for multimedia data communication. For an acoustic part, a smaller and lighter microspeaker is also soon to be realized as an MP3 song player and a speakerphone. Sound quality in the microspeaker is becoming more important in mobile phones. It is evaluated by total harmonic distortion (THD). THD is the proportion of higher order frequencies output response to sinusoidal input signal. It is affected by uneven magnetic distribution and nonlinear response of diaphragm. In this paper, harmonic distortion is analyzed by considering magnetic and mechanical coupling effects. Simulated results of THD are compared with experimental data. Results show that THD in lower frequency range is higher due to high displace on voice coil and high mechanical response of high order frequency.

  • PDF

Damping Characteristic of Helmholtz Resonator according to Its Geometry and Sound Pressure Level (헬름홀쯔 공명기의 기하학적 형상과 가진 음압에 따른 감쇠 특성)

  • Song, Jae-Kang;Kim, Ki-Woo;Chae, Byoung-Chan;Ko, Young-Sung;Kim, Sun-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.10
    • /
    • pp.966-972
    • /
    • 2010
  • Damping characteristics of a Helmholtz resonator to passively control the combustion instability were investigated by linear acoustic analysis and atmospheric acoustic tests. Its orifice length and diameter were selected as the design parameters and supplied SPL(sound pressure level) effect on damping characteristics were investigated. Damping capacity is improved by decreasing the orifice length as well as by increasing the orifice diameter. Also, the results showed that the damping capacity of the resonator decreased nonlinearly about above 110 dB and instabilities in the nonlinear region were more effectively suppressed by increasing the orifice diameter.

Higher Order Spectra and Their Application to Mechanical Systems(II) -Analysis on the Interactions of Harmonics in Exhaust Pipe of Engines- (고차스펙트럼과 기계적 시스템의 응용연구(2)-기관 배기관내의 조화파 상호작용 해석-)

  • 이준서;차경옥
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.85-92
    • /
    • 2000
  • The pulsating pressure waves are composed of fundamental frequency and higher order harmonics in exhaust pipe of engines. The nonlinearity in exhaust pipe is caused by their interactions. The error which is between prediction and measurement is induced by the nonlinearity. We can not explain this phenomenon using linear acoustic theory which is existing theory. So power spectrum which was used in linear theory is not useful. Bispectrum and bicoherence functions which are a higher order spectrum are applicable to explain this phenomenon. This paper proposes a nonlinear effect of pulsating pressure waves. The phenomenon proposed here is identified by using of higher order spectrum density functions.

  • PDF

A Study on Nonlinear Acoustic Effect of Bubble Layer in Water (수중 기포층의 비선형 음향 효과에 대한 연구)

  • 이영호
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06e
    • /
    • pp.121-124
    • /
    • 1998
  • 수중에서 발생된 기포에 음파가 입사되었을 때, 입사된 음파는 물 속의 기포들에 강제적인 진동을 주어 새로운 음원으로서 활동하게 한다. 이런 경우 기포의 진동은 비선형적인 진동 특성이 강하게 나타나게 되어, 기포는 입사된 음파에 의존하는 비선형 인자로서 작용하게 된다. 본 논문에서는 수중에 발생되는 기포층의 비선형응답 및 다른 형태의 응답을 실험적으로 고찰하기 위하여, 인위적으로 제작된 기포 발생장치를 이용하여 발생된 기포층에 음파를 입사하였다. 이때 입사된 음파는 기포들과의 상호작용을 인하여 여러 가지 응답을 나타내었으며, 비선형 응답으로써 배진동 세기의 현저한 증가와 합주파수 음파 발생 등이 두드러지게 나타났다. 또한 개개 기포의 공진 주파수 근처에서는 물론, 그보다 높은 고주파수에서도 합주파수 형태의 비선형응답이 매우 특징적으로 관찰되었다.

  • PDF

Effect of Cortical Bone on Acoustic Properties of Trabecular Bone in Bovine Femur In Vitro (생체 외 조건의 소 대퇴골에서 해면질골의 음향특성에 대한 피질골의 효과)

  • Hwang, Kyo Seung;Lee, Kang Il
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.181-189
    • /
    • 2013
  • The purpose of the present study is to investigate the effect of cortical bone on acoustic properties of trabecular bone, such as speed of sound (SOS) and normalized broadband ultrasound attenuation (nBUA), in bovine femur in vitro. Twelve trabecular bone samples and three cortical bone plates with thicknesses of 1.00, 1.47, and 2.00 mm were extracted from the proximal end of two bovine femurs. The correlations between acoustic properties and trabecular apparent bone density were also examined before and after attaching a cortical bone plate to the trabecular bone samples. SOS increased linearly with increasing thickness of the cortical plate attached to one side of ultrasonic incidence of the trabecular bone samples, whereas nBUA showed a nonlinear dependence on the thickness of the cortical plate. All the SOS (r = 0.95-0.97) and nBUA (r = 0.53-0.73) measurements with and without the cortical bone plate with various thicknesses were found to exhibit high correlations with the trabecular apparent bone density. These results imply that the acoustic properties measured in the femur with lateral cortical layers in vitro can be useful indices for the prediction of trabecular bone mineral density.

Evaluation of high power ultrasonic energy transmission characteristics of a liquid matching layer by using sonoluminescence (소노루미네센스를 이용한 액체정합층의 고출력 초음파에너지 전달특성 평가)

  • Kim, Jungsoon;Kim, Haeun;Son, Jinyoung;Kim, Moojoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.5
    • /
    • pp.408-416
    • /
    • 2021
  • In the ultrasonic dispersion, in order to avoid direct contact of the radiation surface of ultrasonic transducers with a liquid sample, the liquid sample is separated by a glass container and it receives ultrasonic energy through an acoustic medium. The transmission efficiency of the ultrasonic energy in the multi-layered ultrasonic system is an important factor. In this study, we suggested a method that can improve the ultrasonic energy transfer efficiency by using a propylene glycol solution as a liquid matching layer in the multi-layered acoustic system. In this method, a propylene glycol solution was filled between the Langevin-type ultrasonic transducer and the luminol solution and the sonoluminescence phenomena in the luminol solution, which is caused by nonlinear effect of high power ultrasound radiated from the transducer, was examined by using a Photo Multiplier Tube (PMT). The transmission efficiency depending on the concentration of propylene glycol solution was observed, and we can see that as the concentration of the propylene glycol solution increased, the matching effect increased while the acoustic attenuation increased. It was confirmed that there is an optimal concentration compromised these two conflicting conditions, and the optimum concentration of the propylene glycol solution was determined experimentally.

Effect of Hysteresis on Interface Waves in Contact Surfaces

  • Kim, Noh-Yu;Yang, Seung-Yong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.6
    • /
    • pp.578-586
    • /
    • 2010
  • This paper describes a theoretical model and acoustic analysis of hysteresis of contacting surfaces subject to compression pressure. Contacting surfaces known to be nonlinear and hysteretic is considered as a simple spring that has a complex stiffness connecting discontinuous displacements between two solid contact boundaries. Mathematical formulation for 1-D interfacial wave propagation between two contacting solids is developed using the complex spring model to derive the dispersion relation between the interface wave speed and the complex interfacial stiffness. Existence of the interface wave propagating along the hysteretic interface is studied in theory and discussed by investigating the solution to the dispersion equation. Unlike the linear interface without hysteresis, there can exist only one distinct mode of interface waves for the hysteretic interface, which is anti-symmetric motion. The anti-symmetric mode of interface wave propagates with the velocity faster than the Rayleigh surface wave but less than the shear wave depending on the interfacial stiffness. If the contacting surfaces are compressed so much that the linear interfacial stiffness is very high, the hysteretic stiffness does not affect the interface wave velocity. However, it has an effect on the speed of interface wave for a loosely contact surfaces with a relatively low linear stiffness. It is also found that the phase velocity of anti-symmetric wave mode converges to the shear wave velocity in despite of the linear stiffness value if the hysteretic stiffness approaches 0.5.

The suppression of noise-induced speech distortions for speech recognition (음성인식을 위한 잡음하의 음성왜곡제거)

  • Chi, Sang-Mun;Oh, Yung-Hwan
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.12
    • /
    • pp.93-102
    • /
    • 1998
  • In noisy environments, human speech productions are influenced by noises(Lombard effect), and speech signals are contaminated. These distortions dramatically reduce the performance of speech recognition systems. This paper proposes a method of the Lombard effect compensation and noise suppression in order to improve speech recognition performance in noise environments. To estimate the intensity of the Lombard effect which is a nonlinear distortion depending on the ambient noise levels, speakers, and phonetic units, we formulate the measure of the Lombard effect level based on the acoustic speech signal, and the measure is used to compensate the Lombard effect. The distortions of speech under noisy environments are cancelled out as follows. First, spectral subtraction and band-pass filtering are used to cancel out noise. Second, energy nomalization is proposed to cancel out the variation of vocal intensity by the Lombard effect. Finally, the Lombard effect level controls the transform which converts Lombard speech cepstrum to clean speech cepstrum. The proposed method was validated on 50 korean word recognition. Average recognition rates were 82.6%, 95.7%, 97.6% with the proposed method, while 46.3%, 75.5%, 87.4% without any compensation at SNR 0, 10, 20 dB, respectively.

  • PDF

Analyses of Behaviors of a Shape-Memory-Alloy Torque Tube Actuator (형상기억합금 비틀림 튜브 작동기의 거동 해석)

  • Kim, Jun-Hyoung;Kim, Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.1083-1089
    • /
    • 2010
  • Shape memory alloys (SMAs) are smart materials. The unique characteristics of SMAs enable the production of large force and displacement. Hence, SMAs can be used in many applications such as in actuators and active structural acoustic controllers; the SMAs can also be used for dynamic tuning and shape control. A SMA torque tube actuator consisting of SMA tubes and superelastic springs is proposed, and the behaviors of the actuator are investigated. From the results of heat transfer analysis, it is proved that the SMA torque tube actuator with both resistive heating of SMA itself and a separate conventional heating rod in the tube core has good performance. The behavior of an actuator system was analyzed by performing a contact analysis, and the twisting motion was noticed when checking the actuation. 3D SMA nonlinear constitutive equations were formulated numerically and implemented by performing a nonlinear analysis by using Abaqus UMAT.