DOI QR코드

DOI QR Code

생체 외 조건의 소 대퇴골에서 해면질골의 음향특성에 대한 피질골의 효과

Effect of Cortical Bone on Acoustic Properties of Trabecular Bone in Bovine Femur In Vitro

  • 투고 : 2012.11.12
  • 심사 : 2012.12.28
  • 발행 : 2013.03.31

초록

본 연구의 목적은 생체 외 조건의 소 대퇴골에서 피질골이 해면질골의 음속(SOS) 및 광대역 초음파 감쇠(nBUA)와 같은 음향특성에 미치는 효과를 조사하는 것이다. 이를 위해 2개의 소 대퇴골을 이용하여 근위부로부터 12개의 해면질골 샘플 및 1.00, 1.47, 및 2.00 mm의 두께를 갖는 3개의 피질골 판을 제작하였다. 또한 해면질골 샘플에 피질골 판 부착 전후 측정된 음향특성과 해면질골 겉보기 골밀도 사이의 상관관계를 조사하였다. 해면질골 샘플의 초음파 입사면에 부착된 피질골 판의 두께가 증가함에 따라 SOS는 선형적으로 증가하는 반면에 nBUA는 피질골 판의 두께에 대해 비선형적인 의존성을 나타내는 것을 알 수 있었다. 또한 서로 다른 두께를 갖는 피질골 판이 부착되더라도 SOS(r = 0.95-0.97) 및 nBUA(r = 0.53-0.73)와 해면질골 겉보기 골밀도 사이의 높은 상관관계는 유지되는 것을 알 수 있었다. 이와 같은 결과는 생체 외 조건의 피질골이 제거되지 않은 대퇴골에서 측정된 음향특성이 해면질골의 골밀도를 예측하기에 충분한 지표라는 것을 의미한다.

The purpose of the present study is to investigate the effect of cortical bone on acoustic properties of trabecular bone, such as speed of sound (SOS) and normalized broadband ultrasound attenuation (nBUA), in bovine femur in vitro. Twelve trabecular bone samples and three cortical bone plates with thicknesses of 1.00, 1.47, and 2.00 mm were extracted from the proximal end of two bovine femurs. The correlations between acoustic properties and trabecular apparent bone density were also examined before and after attaching a cortical bone plate to the trabecular bone samples. SOS increased linearly with increasing thickness of the cortical plate attached to one side of ultrasonic incidence of the trabecular bone samples, whereas nBUA showed a nonlinear dependence on the thickness of the cortical plate. All the SOS (r = 0.95-0.97) and nBUA (r = 0.53-0.73) measurements with and without the cortical bone plate with various thicknesses were found to exhibit high correlations with the trabecular apparent bone density. These results imply that the acoustic properties measured in the femur with lateral cortical layers in vitro can be useful indices for the prediction of trabecular bone mineral density.

키워드

참고문헌

  1. K. I. Lee and S. W. Yoon, "Ultrasonic diagnosis of osteoporosis," J. Acoust. Soc. Kr. 29, 64-72 (2010).
  2. H. Y. Chung, "Osteoporosis diagnosis and treatment 2007" (in Korean), J. Korean Endocr. Soc. 23, 76-108 (2008).
  3. P. Laugier, "Age-related decrements in bone mineral density in women over 65," J. Bone Miner. Res. 7, 625-632 (1992).
  4. K. S. Hwang, D. W. Seo, and K. I. Lee, "Correlations between acoustic properties and bone mineral density in bovine femoral trabeccular bone in vitro" (in Korean), J. Acoust. Soc. Kr. 31, 244-252 (2012). https://doi.org/10.7776/ASK.2012.31.4.244
  5. Y. L. Shin, "Assessment of bone mineral density" (in Korean), J. Korean Soc. Pediatr. Endocrinol. 11, 123-130 (2006).
  6. G. M. Blake and I. Fogelman, "Bone densitometry and the diagnosis of osteoporosis," Semin. Nucl. Med. 31, 69-81 (2001). https://doi.org/10.1053/snuc.2001.18749
  7. Y. Xia, W. Lin, and Y. Qin, "The influence of cortical end-plate on broadband ultrasound attenuation measurements at the human calcaneus using scanning confocal ultrasound," J. Acoust. Soc. Am. 118, 1801-1807 (2005). https://doi.org/10.1121/1.1979428
  8. C. M. Langton, C. F. Njeh, R. Hodgskinson, and J. D. Currey, "Prediction of mechanical properties of the human calcaneus by broadband ultrasonic attenuation," Bone 18, 495-503 (1996). https://doi.org/10.1016/8756-3282(96)00086-5
  9. C. F. Njeh and C. M. Langton, "The effect of cortical endplates on ultrasound velocity through the calcaneus: An in vitro study," Br. J. Radiol. 70, 504-510 (1997). https://doi.org/10.1259/bjr.70.833.9227233
  10. S. I. Kim and K. I. Lee, "Dependencies of group velocity and attenuation coefficient on structural properties in copper and nickel foams with an open-celled structure as trabecularbone- mimicking phantoms" (in Korean), J. Acoust. Soc. Kr. 30, 158-166 (2011). https://doi.org/10.7776/ASK.2011.30.3.158
  11. B. K. Hoffmeister, D. P. Johnson, J. A. Janeski, D. A. Keedy, B. W. Steinert, A. M. Viano, and S. C. Kaste, "Ultrasonic characterization of human cancellous bone in vitro using three different apparent backscatter parameters in the frequency range 0.6-15.0 MHz," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 1442-1452 (2008). https://doi.org/10.1109/TUFFC.2008.819
  12. F. Padilla, F. Jenson, V. Bousson, F. Peyrin, and P. Laugier, "Relationships of trabecular beone structure with quantitative ultrasound parameters: In vitro study on human proximal femur using transmission and backscatter measurements," Bone 42, 1193-1202 (2008). https://doi.org/10.1016/j.bone.2007.10.024
  13. W. Abendschein and G. W. Hyatt, "Ultrasonics and selected physical properties of bone," Clin. Orthopaed. Rel. Res. 69, 294-301 (1970).
  14. M. A. Greenfield, J. D. Cravern, and A. Huddleston, "Measurement of the velocity of ultrasound in human cortical bone in vivo," Radiology 138, 701-710 (1981). https://doi.org/10.1148/radiology.138.3.7465850
  15. K. A. Wear, "Ultrasonic scattering from cancellous bone: A review," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 1432-1441 (2008). https://doi.org/10.1109/TUFFC.2008.818
  16. K. I. Lee and M. J. Choi, "Frequency-dependent attenuation and backscatter coefficients in bovine trabecular bone from 0.2 to 1.2 MHz," J. Acoust. Soc. Am. 131, EL67-EL73 (2012). https://doi.org/10.1121/1.3671064
  17. S. Chaffai, F. Padilla, G. Berger, and P. Laugier, "In vitro measurement of the frequency-dependent attenuation in cancellous bone between 0.2 and 2 MHz," J. Acoust. Soc. Am. 108, 1281-1289 (2000). https://doi.org/10.1121/1.1288934