• 제목/요약/키워드: nonlinear PID

검색결과 272건 처리시간 0.025초

Hardware Implementation of a Neural Network Controller with an MCU and an FPGA for Nonlinear Systems

  • Kim Sung-Su;Jung Seul
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권5호
    • /
    • pp.567-574
    • /
    • 2006
  • This paper presents the hardware implementation of a neural network controller for a nonlinear system with a micro-controller unit (MCU) and a field programmable gate array (FPGA) chip. As an on-line learning algorithm of a neural network, the reference compensation technique has been implemented on an MCU, while PID controllers with other functions such as counters and PWM generators are implemented on an FPGA chip. Interface between an MCU and a field programmable gate array (FPGA) chip has been developed to complete hardware implementation of a neural controller. The developed neural control hardware has been tested for balancing the inverted pendulum while controlling a desired trajectory of a cart as a nonlinear system.

적분 제어기 정보를 이용한 비선형 마찰보상 (Nonlinear Friction Compensation using the Information of Integral Controller)

  • 송진일;최용훈;유지환;권동수
    • 한국정밀공학회지
    • /
    • 제17권1호
    • /
    • pp.110-119
    • /
    • 2000
  • This paper presents simple and effective nonlinear friction compensation methods. When the direction of position command reverses, the integrator output of the PID controller does not change the sign of its output instantaneously, due to friction at zero velocity, i.e. stiction resulting tracking errors, that results in continuous push even though the command direction has been changed. To overcome this problem, we attempt to reverse the sign of the integrator output as the sign of velocity changes. The effectiveness of this approach is demonstrated by experiments on a 3-PRPS (Prismatic-Revolute-Prismatic-Shperical joints) in-parallel 6-D.O.F manipulator. The control strategy has been analyzed for stability. Also discussed are disturbance observer and velocity observer approaches for friction compensation.

  • PDF

TCSC Nonlinear Adaptive Damping Controller Design Based on RBF Neural Network to Enhance Power System Stability

  • Yao, Wei;Fang, Jiakun;Zhao, Ping;Liu, Shilin;Wen, Jinyu;Wang, Shaorong
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권2호
    • /
    • pp.252-261
    • /
    • 2013
  • In this paper, a nonlinear adaptive damping controller based on radial basis function neural network (RBFNN), which can infinitely approximate to nonlinear system, is proposed for thyristor controlled series capacitor (TCSC). The proposed TCSC adaptive damping controller can not only have the characteristics of the conventional PID, but adjust the parameters of PID controller online using identified Jacobian information from RBFNN. Hence, it has strong adaptability to the variation of the system operating condition. The effectiveness of the proposed controller is tested on a two-machine five-bus power system and a four-machine two-area power system under different operating conditions in comparison with the lead-lag damping controller tuned by evolutionary algorithm (EA). Simulation results show that the proposed damping controller achieves good robust performance for damping the low frequency oscillations under different operating conditions and is superior to the lead-lag damping controller tuned by EA.

소형 자율 수중 운동체의 비연성 제어기 설계 및 HILS 기법을 이용한 성능 평가 (Decoupled Controller Design of Small Autonomous Underwater Vehicle and Performance Test using HILS)

  • 현철
    • 한국군사과학기술학회지
    • /
    • 제16권2호
    • /
    • pp.130-137
    • /
    • 2013
  • In this paper, decoupled controller design for Autonomous Underwater Vehicle(AUV) and its simulated performance test results and Hardware In the Loop Simulation(HILS) results are presented. Control system design is done using the PD control scheme. Stability analysis and step response of closed loop system under uncertain parameter condition are also presented. The results of full coupled nonlinear model simulation show the well applicability of the designed controller. From the results of HILS, we can verify performance of real time processing and implemented hardware for AUV.

비대칭 출력부하에 대한 포화함수를 이용한 자동동조 알고리듬 (Autotuning algorithm for asymmetric output using saturation function)

  • 오승록;오동철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.141-143
    • /
    • 2005
  • An unknown linear time invariant plant with asymmetric oscillation in the output such as a static load disturbance. A saturation function nonlinear element is used to find the one point information in the frequency domain. An asymmetric self-oscillation caused by such as a static load disturbance saturation function feedback is analyzed. a new method to tune a PID controller based on the analysis is proposed in the presence of asymmetric oscillation. The proposed method does not require the knowledge of plant d.c. gain with an asymmetric oscillation in the plant output.

  • PDF

직류직권 모타용 보상된 Bang-Bang 전류제어기 개발 (The development of compensated bang-bang curent controller for DC series wound motor)

  • 김종건;이만형;배종일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.52-55
    • /
    • 1996
  • In order to establish the robust current controller design technique of series wound motor driver system. This paper proposes a method of compensated Bang-Bang current control using a series wound motor driver system under improperly variable load. To get minimum time torque control. A compensated Bang-Bang current controller structure is simpler than the structure of PID plus Bang-Bang controller. This paper shows that a general 8 bits microprocessor be used efficiently implementing such an algorithm. The calculation time of software is extremely small when compared with conventional PID plus Bang-Bang a controller. Both nonlinear operating characteristics of Digital switching elements and Describing Function methods are used for the analysis and synthesis. Real time implementation of compensated Bang-Bang current is achieved. Concept design strategy of the control and PWM waveform generation algorithms are presented in the paper.

  • PDF

유전자 알고리즘과 Estimation기법을 이용한 퍼지 제어기 설계 (Design of Fuzzy PID Controller Using GAs and Estimation Algorithm)

  • 노석범;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.416-419
    • /
    • 2001
  • In this paper a new approach to estimate scaling factors of fuzzy controllers such as the fuzzy PID controller and the fuzzy PD controller is presented. The performance of the fuzzy controller is sensitive to the variety of scaling factors[1]. The desist procedure dwells on the use of evolutionary computing(a genetic algorithm) and estimation algorithm for dynamic systems (the inverted pendulum). The tuning of the scaling factors of the fuzzy controller is essential to the entire optimization process. And then we estimate scaling factors of the fuzzy controller by means of two types of estimation algorithms such as Neuro-Fuzzy model, and regression polynomial [7]. This method can be applied to the nonlinear system as the inverted pendulum. Numerical studies are presented and a detailed comparative analysis is also included.

  • PDF

Servo control of an under actuated system using antagonistic shape memory alloy

  • Sunjai Nakshatharan, S.;Dhanalakshmi, K.;Josephine Selvarani Ruth, D.
    • Smart Structures and Systems
    • /
    • 제14권4호
    • /
    • pp.643-658
    • /
    • 2014
  • This paper presents the design, modelling and, simulation and experimental results of a shape memory alloy (SMA) actuator based critical motion control application. Dynamic performance of SMA and its ability in replacing servo motor is studied for which the famous open loop unstable balancing ball and beam system direct driven by antagonistic SMA is designed and developed. Simulation uses the mathematical model of ball and beam structure derived from the first principles and model estimated for the SMA actuator by system identification. A PID based cascade control system consisting of two loops is designed and control of ball trajectory for various target positions with settling time as control parameter is verified experimentally. The results demonstrate the performance of SMA for a complicated i.e., under actuated, highly nonlinear unstable system, and thereby it's dynamic behaviour. Control strategies bring out the effectiveness of the actuator and its possible application to much more complex applications such as in aerospace control and robotics.

뉴로-퍼지 제어기를 이용한 유압서보시스템의 추적제어 (A Tracking Control of the Hydraulic Servo System Using the Neuro-Fuzzy Controller)

  • 박근석;임준영;강이석
    • 제어로봇시스템학회논문지
    • /
    • 제7권6호
    • /
    • pp.509-517
    • /
    • 2001
  • To deal with non-linearities and time-varying characteristics of hydraulic systems, in this paper, the neuro-fuzzy controller has been introduced. This controller does not require and accurate mathematical model for the nonlinear factor. In order to solve general fuzzy inference problems, the input membership function and fuzzy reasoning rules are used for determining the controller parameters. These parameters are determined by using the learning algorithm. The control performance of the neuro-fuzzy controller is evaluated through a series of experiments for the various types of inputs while applying disturbances to the hydraulic system. The performance of this controller was compared with those of PID and PD controllers. From these results, We observe be said that the position tracking performance of neuro-fuzzy is better those of PID and PD controllers.

  • PDF

학습제어기법을 이용한 X-Y Table의 마찰보상 (Friction Compensation of X-Y robot Using a Learning Control Technique)

  • 손경오;국태용
    • 제어로봇시스템학회논문지
    • /
    • 제6권3호
    • /
    • pp.248-255
    • /
    • 2000
  • Whereas the linear PID controller is widely used for control of industrial servo systems a high precision positioning system is not easy to control only with the PID controller due to uncertain nonlinear dynamics such as friction backlash etc. As a viable means to overcome the difficulty a learning control scheme is proposed in this paper that is simple and straightforward to implement. The proposed learning controller takes full advantage of current feedback capability of the inner-loop of the control system in that electrical motor dynamics as the well as mechanical part of X-Y positioning system is included in the learning control scheme, The experimental results are given to demonstrate its feasibility and effectiveness in terms of convergence precision of tracking and robustness in comparison with the conventional control method.

  • PDF