• 제목/요약/키워드: nondestructive testing technology

검색결과 345건 처리시간 0.021초

2.25Cr-1Mo 강 인공 열화재의 고주파수 초음파 감쇠특성에 관한 연구 (A Study on the High Frequency Ultrasonic Attenuation Characterization in Artificially Aging Degraded 2.25Cr-1Mo Steel)

  • 박익근;박은수;김정석;김현묵;권숙인;변재원
    • 비파괴검사학회지
    • /
    • 제21권4호
    • /
    • pp.439-445
    • /
    • 2001
  • 재료나 설비의 고온 장시간 사용으로 인하여 발생되는 재질열화 평가에는 파괴적인 방법이 널리 사용되고 있으며, 신뢰도가 높다. 그러나, 시험편의 채취가 어렵고 많은 경비와 시간이 소요된다. 전기저항법, 레프리카법, 바크하우젠 노이즈법, 전기화학적방법, 초음파법 등과 같은 비파괴적인 열화손상 평가 방법이 주목을 받고 있다. 본 연구에서는 2.25Cr-1Mo 강을 $630^{\circ}C$에서 장시간 등온열처리로 모의 열화시험편을 제작하고, 고온설비부재에서 발생되는 미세조직의 변화와 고주파 초음파의 전파특성(감쇠계수)과의 일대일 상관관계를 규명하여 초음파 비파괴평가에 의한 열화도 평가의 유용성 유모를 실험적으로 검증하였다. 그 결과 2.25Cr-1Mo 인공열화재의 경우 열화가 진행됨에 따라 탄화물의 석출 및 조대화가 일어나며 초음파 감쇠계수는 증가하는 경향을 나타내었으며, 그 정도는 침상의 탄화물이 거의 소멸되는 1,000시간 이후에 초음파 감쇠계수가 급격히 증가하는 매우 좋은 상관성을 나타내었다.

  • PDF

비파괴평가에 의한 라디에타소나무 단판 및 수지함침시트 표면적층 합판의 휨성능 (Bending Performances of Radiata Pine Veneers and Phenol Resin-Impregnated Sheet Overlaid Plywoods by Nondestructive Evaluation)

  • 서진석
    • Journal of the Korean Wood Science and Technology
    • /
    • 제26권1호
    • /
    • pp.87-96
    • /
    • 1998
  • The bending performances were evaluated at the radiata pine plywood through veneer compositions encompassing veneer quality, ply-numbers and overlays of the high density- or medium density-phenol resin impregnated sheets (hereafter abbreviated as resin sheets) on the raw plywood. In addition, a prediction on the bending MOE of veneers and plywoods was carried out by the nondestructive testing with stresswave timer. The summarized results were as follows: I. Bending strength and bending MOE of resin sheets-overlaid plywoods in parallel surface grain direction through 5 and 7ply were increased by 13 to 45% and 17 to 34%, respectively. Resin sheets-overlay occurred an increasing effect of the strength efficiency i.e. strength perpendicular-to-grain direction versus that parallel-to-grain direction, showing the phenomenon that the plywood strength becomes greater at the perpendicular-to-grain direction of 7ply than at that of 5ply. Displacement at bending failure had a greater trend at 7ply than at 5ply, and was decreased by resin sheets-overlay. 2. After the nondestructive bending MOEs were measured for individual veneers, these veneers were rearranged in plywood-manufacture. In these plywoods, including resin sheets-overlay, the actual MOE was predictable with feasibility of $R^2$=0.53, and also the nondestructively-evaluated MOE was lower by 20% in raw plywood, and higher 20% in LVL than actual bending MOEs.

  • PDF

Active Infrared Thermography for Visualizing Subsurface Micro Voids in an Epoxy Molding Compound

  • Yang, Jinyeol;Hwang, Soonkyu;Choi, Jaemook;Sohn, Hoon
    • 비파괴검사학회지
    • /
    • 제37권2호
    • /
    • pp.106-114
    • /
    • 2017
  • This paper presents an automated subsurface micro void detection technique based on pulsed infrared thermography for inspecting epoxy molding compounds (EMC) used in electronic device packaging. Subsurface micro voids are first detected and visualized by extracting a lock-in amplitude image from raw thermal images. Binary imaging follows to achieve better visualization of subsurface micro voids. A median filter is then applied for removing sparse noise components. The performance of the proposed technique is tested using 36 EMC samples, which have subsurface (below $150{\mu}m{\sim}300{\mu}m$ from the inspection surface) micro voids ($150{\mu}m{\sim}300{\mu}m$ in diameter). The experimental results show that the subsurface micro voids can be successfully detected without causing any damage to the EMC samples, making it suitable for automated online inspection.

UAFM(초음파원자현미경) 팁의 진동-접촉 해석과 나노 표면에의 응용 (Vibro-Contact Analysis of Ultrasonic Atomic Force Microscopy Tip and It's Application to Nano Surface)

  • 박태성;곽동열;박익근;김정석
    • 비파괴검사학회지
    • /
    • 제30권2호
    • /
    • pp.132-138
    • /
    • 2010
  • 본 연구에서는 접촉역학 특성에 의한 캔틸레버 탑의 접촉-진동을 연구하고 나노스케일의 표면에서 탄성특성을 이미지화 하였다. 스프링-질량 모텔과 Herzian 이론을 이용하여 접촉공진주파수를 이론적으로 계산하고 초음파원자현미경을 이용하여 캔틸레버의 자유공진주파수와 접촉공진주파수의 변화를 분석하였다. 또한, 프로토타입의 초음파원자현미경을 이용하여 구상화 열처리된 시험편의 탄성 이미지를 위상과 진폭 신호를 이용하여 성공적으로 얻을 수 었었다.

도시철도차량 결함평가를 위한 비파괴검사 기법의 적용방안 (A Study on Utilization of Nondestructive Inspection Method for Defects Evaluation in Electric Multiple Units)

  • 편장식;정종덕
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.673-679
    • /
    • 2009
  • Nondestructive inspection(NDI) is a testing procedure used to easily inspect an object for internal defects, abnormalities, shape, and structure, etc. without destroying it. Typical candidates for NDI include buildings, railways, aircraft, bridges, underground pipelines and various types of factory equipment. Recent advances in nondestructive evaluation(NDE) technologies have led to improved methods for quality control and in-service inspection, and the development of new options for material diagnostics. This paper introduces the methods of a survey and assessment on NDI applications in Electric Multiple Units(EMU). The main objective of this paper was to obtain information on various applications of NDI technology in EMU.

  • PDF

경량 구조재료의 접합강도평가 (Joints Strength Evaluation of light Structure material)

  • 장철섭;이원;오승규
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.234-238
    • /
    • 2005
  • One approach to testing the suitability of a adhesive joint for a particular application is to build and test to destruction of a representative sample of the joint. The nondestructive test will not measure strength directly but will measure a parameter which can be correlated to the strength. It is therefore, essential that a suitable nondestructive test is chosen and its results are correctly interpreted. In this paper, typical ultrasonic signal analysis in adhesive joints are evaluated together with interface stress from the result of finite element analysis.

  • PDF

Influence of Heat-Treatment on the Adhesive Strength between a Micro-Sized Bonded Component and a Silicon Substrate under Bend and Shear Loading Conditions

  • Ishiyama, Chiemi
    • 비파괴검사학회지
    • /
    • 제32권2호
    • /
    • pp.122-130
    • /
    • 2012
  • Adhesive bend and shear tests of micro-sized bonded component have been performed to clarify the relationship between effects of heat-treatment on the adhesive strength and the bonded specimen shape using Weibull analysis. Multiple micro-sized SU-8 columns with four different diameters were fabricated on a Si substrate under the same fabrication condition. Heat-treatment can improve both of the adhesive bend and shear strength. The improvement rate of the adhesive shear strength is much larger than that of the adhesive bend strength, because the residual stress, which must change by heat-treatment, should effect more strongly on the shear loading. In case of bend type test, the adhesive bend strength in the smaller diameters (50 and $75\;{\mu}m$) widely vary, because the critical size of the natural defect (micro-crack) should vary more widely in the smaller diameters. In contrast, in case of shear type test, the adhesive shear strengths in each diameter of the columns little vary. This suggests that the size of the natural defects may not strongly influence on the adhesive shear strength. All the result suggests that both of the adhesive bend and shear strengths should be complicatedly affected by heat-treatment and the bonded columnar diameter.

Detection of Second-Layer Corrosion in Aging Aircraft

  • Kim, Noh-Yu;Yang, Seun-Yong
    • 비파괴검사학회지
    • /
    • 제29권6호
    • /
    • pp.591-602
    • /
    • 2009
  • The Compton backscatter technique has been applied to lap-joint in aircraft structure in order to determine mass loss due to exfoliative corrosion of the aluminum alloy sheet skin. The mass loss of each layer has been estimated from Compton backscatter A-scan including the aluminum sheet, the corrosion layer, and the sealant. A Compton backscattering imaging system has been also developed to obtain a cross-sectional profile of corroded lap-splices of aging aircraft using a specially designed slit-type camera. The camera is to focus on a small scattering volume inside the material from which the backscattered photons are collected by a collimated scintillator detector for interpretation of material characteristics. The cross section of the layered structure is scanned by moving the scattering volume through the thickness direction of the specimen. The theoretical model of the Compton scattering based on Boltzmann transport theory is presented for quantitative characterization of exfoliative corrosion through deconvolution procedure using a nonlinear least-square error minimization method. It produces practical information such as location and width of planar corrosion in layered structures of aircraft, which generally cannot be detected by conventional NDE techniques such as the ultrasonic method.

Ultrasonic Evaluation of Interfacial Stiffness for Nonlinear Contact Surfaces

  • Kim, Noh-Yu;Kim, Hyun-Dong;Cho, Youn-Ho
    • 비파괴검사학회지
    • /
    • 제28권6호
    • /
    • pp.504-511
    • /
    • 2008
  • This paper proposes an ultrasonic measurement method for measurement of linear interfacial stiffness of contacting surface between two steel plates subjected to nominal compression pressures. Interfacial stiffness was evaluated by using shear waves reflected at contact interface of two identical solid plates. Three consecutive reflection waves from solid-solid surface are captured by pulse-echo method to evaluate the state of contact interface. A non-dimensional parameter defined as the ratio of their peak-to-peak amplitudes are formulated and used to calculate the quantitative stiffness of interface. Mathematical model for 1-D wave propagation across interfaces is developed to formulate the reflection and transmission waves across the interface and to determine the interfacial stiffness. Two identical plates are fabricated and assembled to form contacting surface and to measure interfacial stiffness at different states of contact pressure by means of bolt fastening. It is found from experiment that the amplitude of interfacial stiffness is dependent on the pressure and successfully determined by employing pulse-echo ultrasonic method without measuring through-transmission waves.