• Title/Summary/Keyword: nondestructive testing and evaluation

Search Result 453, Processing Time 0.025 seconds

Recent Advances in Scanning Acoustic Microscopy for Adhesion Evaluation of Thin Films

  • Ju, Hyeong-Sick;Tittmann, Bernhard R.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.6
    • /
    • pp.534-549
    • /
    • 2009
  • As the thin film technology has emerged in various fields, adhesion of the film interface becomes an important issue in terms of the longevity and durability of thin film devices. Diverse nondestructive methods utilizing acoustic techniques have been developed to assess the interfacial integrity. As an effective technique based on the ultrasonic wave focusing and the surface acoustic wave(SAW) generation, scanning acoustic microscopy(SAM) has been investigated for adhesion evaluation. Visualization of film microstructures and quantification of adhesion weakness levels by SAW dispersion are the recent achievements of SAM. To overcome the limitations in the theoretical dispersion model only suitable for perfectly elastic and isotropic materials, a new model has been more recently developed in consideration of film anisotropy and viscoelasticity and applied to the adhesion evaluation of polymeric films fabricated on semiconductive wafers.

New Requirements for Inservice Inspection of Nuclear Power Plant, Components and Its Prospect (원자력발전소(原子力發電所) 기기(機器) 가동중검사(稼動中檢査)에 대한 신규(新規) 요건(要件)과 그 전망(展望))

  • Lee, J.P.;Choi, H.L.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.15 no.2
    • /
    • pp.407-414
    • /
    • 1995
  • 원자력발전소의 주요 기기들에 대한 가동중검사는 관련법규에 따라 철저히 수행되고 있다. 그러나 최근 선진국에서는 이에 만족하지 않고 원전 기기의 안전성을 더욱 확고히 하기 위해 기존의 가동중검사 요건을 계속 강화하고 있으며, 원전 관련 당사자들은 강화된 요건들을 충족시키기 위한 노력을 끊임없이 계속하고 있다. 이 글에서는 원전 기기 가동중검사 신규 요건들인 초음파탐상검사 시스템의 기량검증(Performance Demonstration) 요건, 비파괴검사자 및 초음파검사자 자격 인정 요건(ANSI/ASNT CP-189, Appendix VII of ASME Sec. XI), 증기발생기 전열관 와전류검사, 신호평가자 자격인정(Qualified Data Analyst : QDA), 미국규제기관(NRC)에서 발행하고 있는 NRC Bulletin, NRC information 등의 가동중검사 관련 사항들을 살펴보고 선진 외국에서는 이들 요건 및 정보에 대해 어떻게 대처하고 있는가를 알아본다. 또한 국내에서도 이들 신규 요건에 대한 대처 현황과 대처 방안을 모색한다.

  • PDF

Nondestructive testing for the evaluation of adhesive layer in rocket motor case assembly (연소관 조립체 접합계면의 평가를 위한 비파괴시험에 관한 연구)

  • 박준수;송성진;김영환;임수용;윤남균;조정표
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.90-93
    • /
    • 2001
  • In the present work, ultrasonic testing method has been developed to evaluate adhesive layers in rocket motor case assembly for the reliability of the rocket. The main objective of the present work was to find debonding between steel and rubber layers. The relationship between adhesion ratio and reflected ultrasonic amplitude was calculated by considering reflection coefficient at the interface between steel and rubber layers. It was found that the higher amplitude of ultrasound is reflected for the debonding area, and shown good agreements with experimental results. The ultrasonic C-scan images offers good implements for the determination of debonding area. The nondestructive testing results were compared with the micrography of destruective testing. As results, ultrasonic testing could be utilized for the evaluation of adhesive layer in the rocket motor case assembly.

  • PDF

Eddy Current Testing(III) (와전류탐상법(渦過電流探傷法)(III))

  • Cheong, Yong-Moo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.13 no.4
    • /
    • pp.47-56
    • /
    • 1994
  • 지난 호에 이어 해설란을 통하여 비파괴검사(非破壞檢査) 기술(技術)에 대한 연재를 계속한다. 특정한 비파괴검사(非破壞檢査)의 전문가가 아니더라도 쉽게 이해할 수 있도록 가급적 수식은 배제하고 기초적인 이론을 소개할 것이며 특히 현장 적용에 중점을 두어 기술(技術)하고자 한다. 본 원고에서는 원거리 와전류탐상법(渦電流探傷法(remote field eddy current testing) 이나 펄스 와전류탐상법(渦電流探傷法(pulsed eddy current testing)과 같은 특수 와전류(渦電流) 기술(技術)은 제외하였으며 본 연구실에서 내부 교육용으로 사용하는 "와전류탐상법(渦電流探傷法) Level I 과정"과 미국금속학회에서 발행한 Metal Handbook, 9th ed., Vol. 17, "Nondestructive Evaluation and Quality Control" 및 기타 관련 기술 자료들을 참고하였으나 일일이 명기하지는 않는다.

  • PDF

Eddy Current Testing(II) (와전류탐상법(渦電流探傷法)(II))

  • Cheong, Yong-Moo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.13 no.3
    • /
    • pp.39-45
    • /
    • 1993
  • 지난 호에 이어 해설란을 통하여 비파괴검사(非破壞檢査) 기술(技術)에 대한 연재를 계속한다. 특정한 비파괴검사(非破壞檢査)의 전문가가 아니더라도 쉽게 이해할 수 있도록 가급적 수식은 배제하고 기초적인 이론을 소개할 것이며 특히 현장 적용에 중점을 두어 기술(技術)하고자 한다. 본 원고에서는 원거리 와전류탐상법(渦電流探傷法(remote field eddy current testing) 이나 펄스 와전류탐상법(渦電流探傷法(pulsed eddy current testing)과 같은 특수 와전류(渦電流) 기술(技術)은 제외하였으며 본 연구실에서 내부 교육용으로 사용하는 "와전류탐상법(渦電流探傷法) Level I 과정"과 미국금속학회에서 발행한 Metal Handbook, 9th ed., Vol. 17, "Nondestructive Evaluation and Quality Control" 및 기타 관련 기술 자료들을 참고하였으나 일일이 명기하지는 않는다.

  • PDF

The Evaluation on the frequency Characteristics of the Optical Glass Lens by Resonant Ultrasound Spectroscopy (RUS법에 의한 광학기기용 렌즈의 주파수 특성평가)

  • Yang, In-Young;Kim, Seung-Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.2
    • /
    • pp.127-132
    • /
    • 2005
  • The optical glass lens is required high dimensional precision such as the lack of defect. In this paper, we examined the detectable defect by using the resonant ultrasound spectroscopy(RUS). The RUS is the measurement system which is to excite the specimen and to inspect the differences of resonant frequency pattern between acceptable specimen and specimen which has some defects. In this paper, for nondestructive evaluation by using RUS, we measured the resonant frequency of each specimen which is spherical and aspherical glass lens. With the results, we knew the polishing processing degree of spherical glass lens by the measured resonant frequency and could evaluate the characteristic of aspherical glass lens about some flaws.

Evaluation of High Attenuation Material Using Utrasonic Wave Analysis (초음파의 파형 해석에 의한 고감쇠 재료의 평가)

  • Nam, Young-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.15 no.2
    • /
    • pp.364-370
    • /
    • 1995
  • The purpose of this paper was to develop a nondestructive evaluation method of sintered material by ultrasonic method. The density distribution of sintered material becomes inhomogeneous partially because of the friction between the powder and the die during compaction. The inhomogeneity was investigated by measurement of the energy attenuation coefficient and the shift of the center frequency in the frequency spectrum of the ultrasonic reflection echo. The experimental results showed that the center frequency of reflection wave depended linearly on the density of sintered materials. However, the attenuation coefficient decreased inversely as the density increased. This study shows that the shift of the center frequency in the frequency spectrum of reflection wave can be used to a nondestructive evaluation of sintered materials.

  • PDF

An Application of a Magnetic Camera for an NDT System for Aging Aircraft

  • Kim, Jung-Min;Jun, Jong-Woo;Lee, Jae-Sun;Lee, Jin-Yi
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.3
    • /
    • pp.212-224
    • /
    • 2010
  • The usefulness of the magnetic camera for non-destructive testing of aging aircraft is discussed in this paper. The magnetic camera can be used f magnetic particle testing(MT), magnetic flux leakage testing(MFLT), eddy current testing(ECT) and penetration testing(PT). It measures the distribution of a magnetic field and visualizes the magnetic pattern. Near and far side cracks, fatigue, thickness degradation, and cracks under rivets have been detected. The possibility of quantitative evaluation was also examined. Using indirect experiments, we verified the detection ability of the sensor for cracks in titanium and advanced composite materials.

Development of Self-compensated Technique for Evaluation of Surface-breaking Crack by Using Laser Based Ultrasound

  • Choi, Sang-Woo;Lee, Joon-Hyun;Cho, Youn-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.3
    • /
    • pp.215-221
    • /
    • 2005
  • It is required to evaluate nondestructively depth of surface-breaking cracks in structures. In this paper, the self-compensated technique by laser-based ultrasound is used to measure the depth of surface-breaking defect. Optical generation of ultrasound produces a well defined pulse with reliable frequency content. It is broad banded and suitable for measurement of attenuation and scattering over a wide frequency range. The self-calibrated signal transmission data of surface wave shows good sensitivity as a practical tool far assessment of surface-breaking defect depth. It is suggested that the relationship between the signal transmission and crack depth can be used to predict the surface-breaking crack depths in structures.

Numerical Analysis of Scattered Fields of Ultrasonic SH-Wave by Multi-Defects (재료내 다중결함에 의한 SH형 초음파 산란장의 수치해석)

  • Lee, Joon-Hyun;Lee, Seo-Il;Cho, Youn-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.4
    • /
    • pp.304-312
    • /
    • 1998
  • In order to assure the reliability and integrity of structures such as bridges, Power and petrochemical plants, nondestructive evaluation techniques are recently playing more important roles. Among the various kinds of nondestructive evaluation techniques, ultrasonic technique is one of the most widely used methods for nondestructive inspection of internal defects in structures. For the reliable quantitative evaluation of internal defects from the experimental ultrasonic signals, a numerical analysis of ultrasonic scattering field due to a defect distribution is absolutely required. In this paper, the SH-wave scattering by multi-cavity defects using elastodynamic boundary element method is studied. The effects of shape of defects on transmitted and reflected fields are considered. The interaction of multi-cavity defects in 50-wave scattering is also investigated. Numerical calculation by the boundary element method has been carried out to predict near field solution of scattered fields of ultrasonic SH-wave. The presented results would be useful to improve the sensitivity of flaw defection for inverse analysis and pursue quantitative nondestructive evaluation for inverse problem.

  • PDF