• Title/Summary/Keyword: non-woven membranes

Search Result 13, Processing Time 0.022 seconds

Enzyme Activity of Lipase Immobilized Non-Woven Fabric for Biodiesel Production (바이오디젤 생산을 위한 리파아제 고정 부직포의 효소활성화)

  • Kim, Ye Jin;Lee, Sung Hae;Hong, Sung Kyu;Kim, Min;Park, Sang Jin
    • Korean Chemical Engineering Research
    • /
    • v.48 no.1
    • /
    • pp.121-127
    • /
    • 2010
  • This study is to optimize the enzyme(lipase) activity for biodiesel production. The ion-exchanged non-woven fabrics(EtA, DEA-EtA non-woven fabric) containing ethanolamine, diethylamine groups are used by radiation induced grafted polymerization onto a non-woven fabric for more effective immobilization of lipase. Since the porous hollow fiber membranes are showed the low throughputibehe non-woven fabric membranes are used for biodiesel production. The physical charateristics of enzyme immobilized and the enzyme activity to EtA and DEA-EtA non-woven fabrics are studied. The EtA non-woven fabrics are quite similar to DEA-EtA non-woven fabric for the amount of enzyme immobilized(EtA non-woven fabric:15.69 mg/g, DEA-EtA non-woven fabric:14.45 mg/g) but DEA-EtA non-woven fabrics have shown the lower permeabiliquite the organic solvent than the EtA non-woven fabrics(EtA non-woven fabric:$3.50mol/h{\cdot}kg$, DEA-EtA non-woven fabric:$0.38mol/h{\cdot}kg$). Optimum characteristics of ehe non-woven fabric membranes and the limilaractivity are also investigated for the effective biodiesel production.

Preparation and Characterization of Electrospun Poly(L-lactic acid-co-succinic acid-co-1,4-butane diol) Fibrous Membranes

  • Jin Hyoung-Joon;Hwang Mi-Ok;Yoon Jin San;Lee Kwang Hee;Chin In-Joo;Kim Mal-Nam
    • Macromolecular Research
    • /
    • v.13 no.1
    • /
    • pp.73-79
    • /
    • 2005
  • Poly(L-lactic acid-co-succinic acid-co-l,4-butane diol) (PLASB) was synthesized by direct condensation copolymerization of L-lactic acid (LA), succinic acid (SA), and 1,4-butanediol (BD) in the bulk using titanium(IV) butoxide as a catalyst. The weight-average molecular weight ofPLASB was $2.1{\times}10^{5}$ when the contents of SA and BD were each 0.5 mol/100 mol of LA. Electrospinning was used to fabricate porous membranes from this newly synthesized bioabsorbable PLASB dissolved in mixed solvents of methylene chloride and dimethylformamide. Scanning electron microscopy (SEM) images indicated that the fiber diameters and nanostructured morphologies of the electrospun membranes depended on the processing parameters, such as the solvent ratioand the polymer concentration. By adjusting both the solvent mixture ratio and the polymer concentration, we could fabricate uniform nanofiber non-woven membranes. Cell proliferation on the electrospun porous PLASB membranes was evaluated using mouse fibroblast cells; we compare these results with those of the cell responses on bulk PLASB films.

Photovoltaic Performance of Dye-sensitized Solar Cells assembled with Hybrid Composite Membrane based on Polypropylene Non-woven Matrix

  • Choi, Yeon-Jeong;Kim, Dong-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.605-608
    • /
    • 2011
  • Hybrid composite membranes were prepared by coating poly(ethylene oxide) and $SiO_2$ particles onto the porous polypropylene nonwoven matrix. Gel polymer electrolytes prepared by soaking the hybrid composite membranes in an organic electrolyte solution exhibited ionic conductivities higher than $1.1{\times}10^{-3}Scm^{-1}$ at room temperature. Dyesensitized solar cell (DSSC) employing the hybrid composite membrane with PEO and 10 wt % $SiO_2$ exhibited an open circuit voltage of 0.77 V and a short circuit current of 10.78 $mAcm^{-2}$ at an incident light intensity of 100 $mWcm^{-2}$, yielding a conversion efficiency of 5.2%. DSSC employing the hybrid composite membrane showed more stable photovoltaic performance than that of the DSSC assembled with liquid electrolyte.

Enhanced performance of thin-film nanocomposite RO/NWF membrane by adding ZnO nanospheres in aqueous phase during interfacial polymerization process

  • Li, Hongbin;Shi, Wenying;Su, Yuheng;Hou, Hongxiang;Du, Qiyun;Zhang, Haixia;Qin, Xiaohong
    • Membrane and Water Treatment
    • /
    • v.8 no.3
    • /
    • pp.225-244
    • /
    • 2017
  • A novel thin-film nanocomposite (TFN) reverse osmosis (RO)/non-woven fabric (NWF) membrane was prepared by adding zinc oxide (ZnO) nanospheres ($30{\pm}10nm$) during the interfacial polymerization process of m-phenylenediamine (MPD) and trimesoyl chloride (TMC) on self-made polysulfone (PSF) membrane/polyester (PET) non-woven fabric support. The improved performance of TFN RO membrane was verified in terms of water contact angle (WCA), water flux, salt rejection, antifouling properties and chlorine resistance. The results showed that the WCA value of TFN RO surface had a continuous decrease with the increasing of ZnO content in MPD aqueous solution. The water flux of composite TFN RO membranes acquired a remarkable increase with a stable high solute rejection (94.5 %) in $1g{\cdot}L^{-1}$ NaCl aqueous solution under the optimized addition amount of ZnO (1 wt%). The continuous testing of membrane separation performance after the immersion in sodium hypochlorite solution indicated that the introduction of ZnO nanospheres also dramatically enhanced the antifouling properties and the chlorine resistance of composite RO membranes.

The Bone regenerative effects of tetracycline blended chitosan membranes on the calvarial critical size defect in Sprague dawley rats (백서 두개골 결손부에서 항생제를 함유한 키토산 차단막의 골재생 유도 효과)

  • Chae, Gyung-Joon;Kim, Tae-Gyun;Jung, Ui-Won;Lee, Soo-Bok;Jung, Yong-Sik;Lee, Yong-Keun;Kim, Chang-Sung;Chae, Jung-Kiu;Cho, Kyoo-Sung;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.4
    • /
    • pp.1019-1037
    • /
    • 2005
  • The major goals of periodontal therapy are the functional regeneration of periodontal supporting structures already destructed by periodontal disease as well as the reduction of signs and symptoms of progressive periodontal disease. There have been many efforts to develop materials and therapeutic methods to promote periodontal wound healing. There have been increasing interest on the chitosan made by chtin. Chitosan is a derivative of chitin made by deacetylation of side chains. Chitosan has been widely studied as bone substitution and membrane material in periodontology. Many experiments using chitosan in various animal models have proven its beneficial effects. Tetracycline has been considered for use in the treatment of chronic periodontal disease and gingivitis. The aim of this study is to evlauate the osteogenesis of tetracycline blended chitosan membranes on the calvarial critical size defect in Sprague Dawley rats. An 8mm surgical defect was produced with a trephine bur in the area of the midsagittal suture. The rats were divided into five groups: Untreated control group versus four experimental group. Four types of membranes were made and comparative study was been done. Two types of non-woven membranes were made by immersing non-woven chitosan into either the tetracycline solution or chitosan-tetracycline solution. Other two types of sponge membranes were fabricated by immersing chitosan sponge into the tetracycline solution, and subsequent freeze-drying. The animals were sacrificed at 2 and 8 weeks after surgical procedure. The specimens were examined by histologic analyses. The results are as follows: 1. Clinically the use of tetracycline blended chitosan membrane showed great healing capacity. 2. The new bone formations of all the experimental group, non-woven and sponge type membranes were greater than those of control group. But, there was no significant difference between the experimental groups. 3. Resorption of chitosan membranes were not shown in any groups at 2 weeks and 8 weeks. These results suggest that the use of tetracycline blended chitosan membrane on the calvarial defects in rats has significant effect on the regeneration of bone tissue in itself. And it implicate that tetracycline blended chitosan membrane might be useful for guided tissue regeneration.

A Study on the Effect of Accelerated UV Exposure on the Polymer Membrane for Outdoor Users (옥외용 고분자 막의 촉진 자외선 노출 영향 연구)

  • Lee, Joo Hyuk;Kim, Sung Bok;Cho, Kuk Young
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.326-330
    • /
    • 2015
  • Polymeric membranes have been used in various applications and generally applied to the systems prevented from exterior exposure. However, polymer membranes for outdoor usages such as, an air quality monitoring and membrane reservoirs for the selective recovery of useful metals from seawater, have been newly developed. Thus it is required to investigate the properties of the membrane for the outdoor use and also studies of the accelerated UV exposure onto the polymeric membranes are essential to estimate their weatherability. Herein, we report on the thermal and mechanical properties, morphology changes, and color differences of the polysulfone anisotropic membranes and non-woven type polypropylene membranes with the accelerated UV exposure. Results showed that the effect of UV exposure on the membrane depend not only on the polymer used but also on the form of the membrane. This work can provide some of key informations of the membrane for outdoor use.

Probabilistic Modeling of Fiber Length Segments within a Bounded Area of Two-Dimensional Fiber Webs

  • Chun, Heui-Ju
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.3
    • /
    • pp.301-317
    • /
    • 2011
  • Statistical and probabilistic behaviors of fibers forming fiber webs of all kinds are of great significance in the determination of the uniformity and physical properties of the webs commonly found in many industrial products such as filters, membranes and non-woven fabrics. However, in studying the spatial geometry of the webs the observations must be theoretically as well as experimentally confined within a specified unit area. This paper provides a general theory and framework for computer simulation for quantifying the fiber segments bounded by the unit area in consideration of the "edge effects" resulting from the truncated length segments within the boundary. The probability density function and the first and second moments of the length segments found within the counting region were derived by properly defining the seeding region and counting region.

Improvement of PCR Preprocessing Efficiency through PEO-controlled Synthesis of Silica Nanofibers (PCR 전처리 효율 향상을 위한 PEO 제어 실리카 나노섬유 제작)

  • Seung-Min Lee;Hyeon-Ho Choi;Kwang-Ho Lee
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.465-475
    • /
    • 2023
  • In this study, we demonstrated a silica nanofibrous membrane based on the electrospinning process and evaluated its DNA isolation and purification performance in PCR pretreatment. Generally, silica membranes made of non-woven fabric are used for PCR pretreatment, but this study aimed to improve the efficiency of the pretreatment process by developing a nanofiber-type silica membrane with high specific surface area and porosity. In order to manufacture a nanofiber-shaped silica film while maintaining the original physical properties of silica, nanofiber membranes produced by adding various concentrations of PEO (5 wt%, 8 wt%, and 10 wt%) to silica prepared by the sol-gel method were compared. In terms of nanofiber membrane production, the higher the PEO concentration, the more effective it was in producing nanofiber membranes. The produced silica nanofiber membrane was inserted to a pretreatment device used in commercial PCR equipment, and the pretreatment performance was compared and verified using Salmonella bacteria. When Salmonella was used, samples containing 5 wt% PEO showed superior PCR efficiency compared to samples containing 8 wt% and 10 wt% PEO. These results show that adding 5 wt% of PEO can effectively improve DNA purification and separation by producing a nanofiber-shaped silica film while maintaining the physical properties of silica. We expect that this study will contribute to the development of effective PCR pretreatment technology essential for various molecular biology applications.

Preparation and Adsorption Properties of PA6/PSMA-OA Molecularly Imprinted Composite Membranes in Supercritical CO2

  • Zhang, Qing;Zhang, Xingyuan;Zhang, Wencheng;Pan, Jian;Liu, Ling;Zhang, Haitao;Zhao, Dong;Li, Zhi
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3348-3354
    • /
    • 2011
  • Oleanolic acid (OA) as template molecule, polyamide-6 (PA6) as basement membrane and poly(styrene-comaleic acid) (PSMA) were used to prepare PA6/PSMA-OA molecularly imprinted composite membranes by phase inversion method in supercritical $CO_2$ ($ScCO_2$). The template molecule (OA), [poly(styrene-co-maleic anhydride) (PSMAH), PSMA, molecularly imprinted membranes (MIMs) imprinting OA and MIMs after elution were all characterized by Fourier transform infrared spectroscopy (FTIR). The conditions that were the mass ratio between PSMA and OA from 3:1 to 8:1, temperature of $ScCO_2$ from $35^{\circ}C$ to $50^{\circ}C$ and pressure of $ScCO_2$ 12 MPa to 17 MPa were studied. It was obtained the largest adsorption rate and purity of OA after adsorption of the resultant MIMs, 50.41% and 96.15% respectively. After using PA6 film and non-woven fabrics as basement membrane respectively, it was found that smaller aperture of PA6 was used as basement membrane, a higher adsorption rate and a higher purity of OA after adsorption of the MIMs were obtained, and so were the stability and reproducibility of the resultant MIMs. After template molecules being removed, the MIMs had effective selectivity hydrogen bonding to separately bind in the binary components to the template molecules-oleanolic acid.