• Title/Summary/Keyword: non-uniform flow

Search Result 329, Processing Time 0.041 seconds

Hydraulic and Numerical Model Experiments of Circulation Water Intake for Boryeong Thermal Power Plant No. 7 and No. 8 (보령화력발전소 7·8호기 순환수 취수에 대한 수리 및 수치모형실험)

  • Yi, Yong-Kon;Cheong, Sang Hwa;Kim, Chang Wan;Kim, Jong Gang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5B
    • /
    • pp.459-467
    • /
    • 2006
  • In this study, hydraulic and numerical model experiments were performed to analyze and improve the effects of flow-rate increase in the intake canal of Boryeong Thermal Power Plants on the flow condition in the circulation water pump (CWP) chambers. Based on the numerical simulation results, when the flow-rate increased in the circulation water intake canal, the velocity in the canal and vertical vorticities in the circulation water pump chambers increased and hence the vortex occurrence potential would be greatly increased. It was found by performing hydraulic model experiments that the velocity distribution near the bottom in the inlet of the circulation water pump chambers was highly non-uniform while the velocity distribution near the water surface was nearly uniform. To reduce the non-uniformity in the velocity distribution, triangular flow deflectors were devised. The installation of the flow deflectors in the inlet of circulation water pump chambers was successfully to reduce velocity non-uniformities and to remove flow reversal problems.

Numerical Analysis of the Flow in the Drying Chamber of a Sizing Machine (가호기 건조 시스템에서 수치적 유동해석)

  • 이진호;김수연
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1996.10a
    • /
    • pp.29-34
    • /
    • 1996
  • In the present paper, the flow distribution in the hot air drying chamber of a sizing machine was numerically analyzed with respect to the geometries of the intake duct to obtain the more uniform flow distribution in the chamber. The result shows that the velocity distribution in the inlet of the chamber was significantly dependent on the the geometry of the intake duct. The degree of the non-uniformity in the chamber was reduced as the incident angle of the intake duct became to be smaller.

  • PDF

Study on Non-uniform Thermal Comfort in Hybrid Air-Conditioning System with CFD Analysis (CFD 해석을 통한 하이브리드 공조시스템의 인체 온열감의 불균일성에 관한 연구)

  • Nam, Yu-Jin;Sung, Min-Ki;Song, Doo-Sam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.3
    • /
    • pp.216-222
    • /
    • 2011
  • Recently, hybrid air-conditioning system has been proposed and applied to achieve building energy saving. One example is a system combining radiation panel with natural wind-induced cross-ventilation. However, few research works have been conducted on the non-uniformity of thermal comfort in such hybrid air-conditioning system. In this paper, both thermal environment and non-uniform thermal comfort of human thermal model under various air-conditioning system, including hybrid system, were evaluated in a typical office room using coupled simulation of computation fluid dynamics, radiation model and a human thermal model. The non-uniformity of thermal comfort was evaluated from the deviation of surface temperature of human thermal model. Flow fields and temperature distribution in each case were represented.

Flow Analysis for the Geometry Optimization of Combustion Chamber of Central Flow Type Waste Incinerator (중간류식 폐기물 소각로 연소실의 최적형상 설계를 위한 유동해석)

  • Lee, Jin-Uk;Kim, Seong-Bae;Yun, Yong-Seung;Kim, Hyeon-Jin;Heo, Il-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.2
    • /
    • pp.252-259
    • /
    • 2001
  • Computational study has been performed to observe the flow characteristics of combustion chamber for geometrical modification in municipal solid waste incinerator. A series of geometrical modification has been carried out as an attempt to reduce the size of recirculation zone, to obtain uniform flow field in the secondary combustion chamber and to improve the mixing of combustion gas. Two dimensional non-reacting turbulent flow has been studied as the first step to get such goals and the result of design optimization is presented. In addition, three dimensional non-reacting and reacting flow analyses were performed to verify the validity of two dimensional approach.

Design of Asymmetric Pre-swirl Stator for KVLCC2 Considering Angle of Attack in Non-uniform Flow Fields of the Stern (선미의 불균일 유동장에서 받음각을 고려한 비대칭 전류고정날개 설계)

  • Lee, Ki-Seung;Kim, Moon-Chan;Shin, Yong-Jin;Kang, Jin-Gu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.4
    • /
    • pp.352-360
    • /
    • 2019
  • International Maritime Organization (IMO) regulates an emission of greenhouse gases by creating an Energy Efficiency Design Index (EEDI) to reduce environmental pollution. In propulsion system field, studies are under way on Energy Saving Device (ESD), which can improve propulsion efficiency with the propeller, to reduce the EEDI. Among the studies, the study of Pre-Swirl Stator (PSS) has been actively conducted from long time ago. Recently the variable pith angle type pre-swirl stator has been studied to improve the propulsion efficiency in non-uniform flow fields of the Stern. However, for traditional design methods, no specific design method has been established on the blade or location of radius. In this study, proper design method is proposed for each blade or location for radius according to hydrodynamic pitch angle.

Experimental investigation of vortex-induced aeroelastic effects on a square cylinder in uniform flow

  • Huang, Dongmei;Wu, Teng;He, Shiqing
    • Wind and Structures
    • /
    • v.30 no.1
    • /
    • pp.37-54
    • /
    • 2020
  • To investigate the motion-induced aeroelastic effects (or aerodynamic feedback effects) on a square cylinder in uniform flow, a series of wind tunnel tests involving the pressure measurement of a rigid model (RM) and simultaneous measurement of the pressure and vibration of an aeroelastic model (AM) have been systematically carried out. More specifically, the aerodynamic feedback effects on the structural responses, on the mean and root-mean-square wind pressures, on the power spectra and coherence functions of wind pressures at selected locations, and on the aerodynamic forces were investigated. The results indicated the vibration in the lock-in range made the shedding vortex more coherent and better organized, and hence presented unfavorable wind-induced effects on the structure. Whereas the vibration in the non-lock-in range generally showed insignificant effects on the flow structures surrounding the square cylinder.

Flow Analysis of the Spin Coating Machine

  • Ha, Man-Yeong;Kang, Dong-Hoon;Jeong, Bong-Kyo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.1147-1150
    • /
    • 2003
  • When a braun tube becomes wider, one of the major problems to be experienced is the non-uniform coating along the four diagonal directions on its surface. This non-uniformity in the coating thickness has a deep relation with the fluid flow on the surface of a braun tube. In order to control the fluid flow properly, we install the plate to block fluid flow at the corner of a braun tube. In the present study, we investigate the effects of the geometry of plate to control the fluid flow and coating uniformity and determine the optimal shape of plate to improve the quality of coating uniformity.

  • PDF

THE ISOGEOMETRIC VARIATIONAL MULTISCALE METHOD FOR LAMINAR INCOMPRESSIBLE FLOW

  • Moulage, Yourself Gaffers;Ahn, Hyung-Taek
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.16 no.1
    • /
    • pp.65-84
    • /
    • 2012
  • We present an application of the variational multiscale methodology to the computation of concentric annular pipe flow. Isogeometric analysis is utilized for higher order approximation of the solution using Non-Uniform Rational B-Splines (NURBS) functions. The ability of NURBS to exactly represent curved geometries makes NURBS-based isogeometric analysis attractive for the application to the flow through the curved channel.

Numerical Study of Land/Channel Flow-field Optimization in Polymer Electrolyte Fuel Cells (PEFCs) (I) -The Effects of Land/Channel Flow-field on Current Density and HFR Distributions- (고분자전해질형연료전지의 가스 채널 최적화를 위한수치적연구(I) -가스 채널 치수가 전류밀도와 HFR 분포에 미치는영향성-)

  • Ju, Hyun-Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.9
    • /
    • pp.683-694
    • /
    • 2008
  • The performance and durability of Polymer Electrolyte Fuel Cells (PEFCs) are strongly influenced by the uniformity of current density, temperature, species distributions inside a cell In order to obtain uniform distributions in them, the optimal design of flowfield must be a key factor. In this paper, the numerical study of land/channel flowfield optimizations is performed, using a multi-dimensional, multi-phase, non-isothermal PEFC model. Numerical simulations reveal more uniform current density and HFR(High Frequency Resistance) distributions and thus better PEFC performance with narrower land/channel width where the less severe oxygen depletion effect near the land region and more uniform contact resistance variation along the in-plane direction are achieved. The present study elucidates detailed effects of land/channel width and assist in identifying optimal flow-field design strategies for the operation of PEFCs.

A study on Flow Characteristic inside Passenger's Compartment under Recirculation Cool vent mode using CFX (CFX를 이용한 내부순환모드에서의 자동차 내부 유동특성 연구)

  • Kim, Yoon-Kee;Yang, Jang-Sik;Kim, Kyung-Chun;Ji, Ho-Seong
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.1
    • /
    • pp.25-30
    • /
    • 2010
  • The flow characteristics under recirculation cool vent mode is numerically studied using commercial fluid dynamic code(CFX). For the reliable analysis, real vehicle and human FE model is employed in grid generation process. The geometrical location and shape of panel vent, and exhaust vent is set as that of real vehicle model. The flowrate of the working fluid is determined as 330CMH which is equivalent to 70 percent of maximum capacity of HVAC system. The high velocity regions are formed around 4 each panel vent. Because of the non-symmetrically located exhaust, non-uniform flow and partial backflow near the door trim is observed. Streaklines start from each panel vent show the flow pattern of the airflow in the passenger's compartment very well.