• 제목/요약/키워드: non-trivial solution

검색결과 24건 처리시간 0.021초

Buckling analysis of semi-rigid connected and partially embedded pile in elastic soil using differential transform method

  • Catal, Seval
    • Structural Engineering and Mechanics
    • /
    • 제52권5호
    • /
    • pp.971-995
    • /
    • 2014
  • The parts of semi-rigid connected and partially embedded piles in elastic soil, above the soil and embedded in the soil are called the first region and second region, respectively. The upper end of the pile in the first region is supported by linear-elastic rotational spring. The forth order differential equations of both region for critical buckling load of partially embedded and semi-rigid connected pile with shear deformation are established using small-displacement theory and Winkler hypothesis. These differential equations are solved by differential transform method (DTM) and analytical method and critical buckling loads of semirigid connected and partially embedded pile are obtained, results are given in tables and graphs are presented for investigating the effects of relative stiffness of the pile and flexibility of rotational spring.

Buckling analysis of partially embedded pile in elastic soil using differential transform method

  • Catal, Seval;Catal, Hikmet Huseyin
    • Structural Engineering and Mechanics
    • /
    • 제24권2호
    • /
    • pp.247-268
    • /
    • 2006
  • The parts of pile, above the soil and embedded in the soil are called the first region and second region, respectively. The forth order differential equations of both region for critical buckling load of partially embedded pile with shear deformation are obtained using the small-displacement theory and Winkler hypothesis. It is assumed that the behavior of material of the pile is linear-elastic and that axial force along the pile length and modulus of subgrade reaction for the second region to be constant. Shear effect is included in the differential equations by considering shear deformation in the second derivative of the elastic curve function. Critical buckling loads of the pile are calculated for by differential transform method (DTM) and analytical method, results are given in tables and variation of critical buckling loads corresponding to relative stiffness of the pile are presented in graphs.

AN EXISTENCE OF THREE DIFFERENT NON-TRIVIAL SOLUTIONS FOR DISCRETE ANISOTROPIC EQUATIONS WITH TWO REAL PARAMETERS

  • Ahmed A.H., Alkhalidi;Haiffa Muhsan B., Alrikabi;Mujtaba Zuhair, Ali
    • Nonlinear Functional Analysis and Applications
    • /
    • 제27권4호
    • /
    • pp.855-867
    • /
    • 2022
  • This study finds three different solutions (3-Sol's) for the fourth order nonlinear discrete anisotropic equations (DAE) with real parameter. We use the variational method(VM) and 𝜙p-Laplacian operator (𝜙p-LO) to prove the main results. In the following paper, we take the parameters λ, 𝜇 such that λ > 0 and 𝜇 ≥ 0 into consideration.

A new analytical approach for determination of flexural, axial and torsional natural frequencies of beams

  • Mohammadnejad, Mehrdad
    • Structural Engineering and Mechanics
    • /
    • 제55권3호
    • /
    • pp.655-674
    • /
    • 2015
  • In this paper, a new and simplified method is presented in which the natural frequencies of the uniform and non-uniform beams are calculated through simple mathematical relationships. The various vibration problems such as: Rayleigh beam under variable axial force, axial vibration of a bar with and without end discrete spring, torsional vibration of a bar with an attached mass moment of inertia, flexural vibration of the beam with laterally distributed elastic springs and also flexural vibration of the beam with effects of viscose damping are investigated. The governing differential equations are first obtained and then; according to a harmonic vibration, are converted into single variable equations in terms of location. Through repetitive integrations, the governing equations are converted into weak form integral equations. The mode shape functions of the vibration are approximated using a power series. Substitution of the power series into the integral equations results in a system of linear algebraic equations. The natural frequencies are determined by calculation of a non-trivial solution for system of equations. The efficiency and convergence rate of the current approach are investigated through comparison of the numerical results obtained with those obtained from other published references and results of available finite element software.

이상 유동 이론에서의 평면 변형 벤딩 (Plane-strain bending based on ideal flow theory)

  • ;이원오;정관수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.233-236
    • /
    • 2004
  • The major objective of this paper is to clarify the effect of constitutive laws on bulk forming design based on the ideal flow theory. The latter theory is in general applicable for perfectly/plastic materials. However, its kinematics equations constitute a closed-form system, which are valid for any incompressible materials, therefore enabling us to extend design solutions based on the perfectly/plastic constitutive law to more realistic laws with rate sensitive hardening behavior. In the present paper, several constitutive laws commonly accepted for the modeling of cold and hot metal forming processes are considered and the effect of these laws on one particular plane-strain design is demonstrated. The closed form solution obtained describes a non-trivial nonsteady ideal process. The design solutions based on the ideal flow theory are not unique. To achieve the uniqueness, the criterion that the plastic work required to deform the initial shape of a given class of shapes into a prescribed final shape attains its minimum is adopted. Comparison with a non-ideal process is also made.

  • PDF

멀티미디어 Ad Hoc 무선망에서 지연시간 보장 공정큐잉(DGFQ)의 분산적 구현 (Distributed Implementation of Delay Guaranteed Fair Queueing(DGFQ) in Multimedia Ad Hoc Wireless Networks)

  • 양현호
    • 한국콘텐츠학회논문지
    • /
    • 제5권4호
    • /
    • pp.245-253
    • /
    • 2005
  • 멀티미디어 Ad Hoc 무선망은 매우 매력적인 화두이며 이를 통하여 멀티미디어 서비스를 고정된 기간망이 없이도 이동중인 최종 사용자들에게 제공할 수 있다. 그러나 특수한 설계상의 제약점으로 인하여 Ad Hoc 무선망에서 자원을 공정하게 분배하면서도 지연시간을 보장하는 것은 단순한 문제가 아니다. 본 논문에서는 분산적인 방법으로 지연시간 보장 공정 큐잉(DGFQ, Delay Guaranteed Fair Queueing) 방식을 멀티미디어 Ad Hoc 무선망에서 구현하고 성능 평가의 결과를 통하여 DGFQ 방식이 멀티미디어 무선망 환경에서도 제한된 지연시간을 보장할 수 있음을 보였다.

  • PDF

멀티미디어 Ad Hoc 무선망에서의 지연시간 보장방안 (Providing Guaranteed Delay in Multimedia Ad Hoc Wireless Networks)

  • Yang, Hyun-ho
    • 한국정보통신학회논문지
    • /
    • 제7권6호
    • /
    • pp.1177-1186
    • /
    • 2003
  • 멀티미디어 Ad Hoc 무선망은 이동하는 End User에게 멀티미디어 서비스를 제공할 수 있게 하는 유연한 해결방안을 제공하기 때문에 매력적인 주제이다. 그러나 Ad Hoc 무선망의 특별한 설계상의 문제점들로 인하여 자원을 공정하게 공유하면서 제한된 지연시간을 보장하는 것은 간단한 문제가 아니다. 이 논문에서는 지연시간보장 공정큐잉 (DGFQ, Delay Guaranteed Fair Queueing) 방식을 분산적으로 구현하였다. 성능평가를 통하여 DGFQ 방식이 멀티미디어 Ad Hoc 무선망에서도 제한된 지연시간을 제어할 수 있음을 보였다.

A Heuristic Algorithm for Optimal Facility Placement in Mobile Edge Networks

  • Jiao, Jiping;Chen, Lingyu;Hong, Xuemin;Shi, Jianghong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권7호
    • /
    • pp.3329-3350
    • /
    • 2017
  • Installing caching and computing facilities in mobile edge networks is a promising solution to cope with the challenging capacity and delay requirements imposed on future mobile communication systems. The problem of optimal facility placement in mobile edge networks has not been fully studied in the literature. This is a non-trivial problem because the mobile edge network has a unidirectional topology, making existing solutions inapplicable. This paper considers the problem of optimal placement of a fixed number of facilities in a mobile edge network with an arbitrary tree topology and an arbitrary demand distribution. A low-complexity sequential algorithm is proposed and proved to be convergent and optimal in some cases. The complexity of the algorithm is shown to be $O(H^2{\gamma})$, where H is the height of the tree and ${\gamma}$ is the number of facilities. Simulation results confirm that the proposed algorithm is effective in producing near-optimal solutions.

Free vibration analysis of tall buildings with outrigger-belt truss system

  • Malekinejad, Mohsen;Rahgozar, Reza
    • Earthquakes and Structures
    • /
    • 제2권1호
    • /
    • pp.89-107
    • /
    • 2011
  • In this paper a simple mathematical model is presented for estimating the natural frequencies and corresponding mode shapes of a tall building with outrigger-belt truss system. For this purposes an equivalent continuum system is analyzed in which a tall building structure is replaced by an idealized cantilever continuum beam representing the structural characteristics. The equivalent system is comprised of a cantilever shear beam in parallel to a cantilever flexural beam that is constrained by a rotational spring at outrigger-belt truss location. The mathematical modeling and the derivation of the equation of motion are given for the cantilevers with identically paralleled and rotational spring. The equation of motion and the associated boundary conditions are analytically obtained by using Hamilton's variational principle. After obtaining non-trivial solution of the eigensystem, the resulting is used to determine the natural frequencies and associated mode shapes of free vibration analysis. A numerical example for a 40 story tall building has been solved with proposed method and finite element method. The results of the proposed mathematical model have good adaptation with those obtained from finite element analysis. Proposed model is practically suitable for quick evaluations during the preliminary design stages.

A system of multiple controllers for attenuating the dynamic response of multimode floor structures to human walking

  • Battista, Ronaldo C.;Varela, Wendell D.
    • Smart Structures and Systems
    • /
    • 제23권5호
    • /
    • pp.467-478
    • /
    • 2019
  • Composite floor structures formed by continuous slab panels may be susceptible to excessive vibrations, even when properly designed in terms of ultimate limit state criteria. This is due to the inherent vibration characteristics of continuous floor slabs composed by precast orthotropic reinforced concrete panels supported by steel beams. These floor structures display close spaced multimode vibration frequencies and this dynamic characteristic results in a non-trivial vibration problem. Structural stiffening and/or insertion of struts between floors are the usual tentative solution applied to existing vibrating floor structures. Such structural alterations are in general expensive and unsuitable. In this paper, this vibration problem is analyzed on the basis of results obtained from experimental measurements in typical composite floors and their theoretical counterpart obtained with computational modeling simulations. A passive control system composed by multiple synchronized dynamic attenuators (MSDA) was designed and installed in these floor structures and its efficiency was evaluated both experimentally and through numerical simulations. The results obtained from experimental tests of the continuous slab panels under human walking dynamic action proved the effectiveness of this control system in reducing vibrations amplitudes.