• Title/Summary/Keyword: non-thermal treatment

Search Result 278, Processing Time 0.03 seconds

Principles and Applications of Non-Thermal Technologies for Meat Decontamination

  • Yewon Lee;Yohan Yoon
    • Food Science of Animal Resources
    • /
    • v.44 no.1
    • /
    • pp.19-38
    • /
    • 2024
  • Meat contains high-value protein compounds that might degrade as a result of oxidation and microbial contamination. Additionally, various pathogenic and spoilage microorganisms can grow in meat. Moreover, contamination with pathogenic microorganisms above the infectious dose has caused foodborne illness outbreaks. To decrease the microbial population, traditional meat preservation methods such as thermal treatment and chemical disinfectants are used, but it may have limitations for the maintenance of meat quality or the consumers acceptance. Thus, non-thermal technologies (e.g., high-pressure processing, pulsed electric field, non-thermal plasma, pulsed light, supercritical carbon dioxide technology, ozone, irradiation, ultraviolet light, and ultrasound) have emerged to improve the shelf life and meat safety. Non-thermal technologies are becoming increasingly important because of their advantages in maintaining low temperature, meat nutrition, and short processing time. Especially, pulsed light and pulsed electric field treatment induce few sensory and physiological changes in high fat and protein meat products, making them suitable for the application. Many research results showed that these non-thermal technologies may keep meat fresh and maintain heat-sensitive elements in meat products.

Evaluation of Non-Thermal Decontamination Processes to Have the Equivalence of Thermal Process in Raw Ground Chicken

  • Park, Eunyoung;Park, Sangeun;Hwang, Jeong Hyeon;Jung, Ah Hyun;Park, Sung Hee;Yoon, Yohan
    • Food Science of Animal Resources
    • /
    • v.42 no.1
    • /
    • pp.142-152
    • /
    • 2022
  • The present study was aimed at examining the antibacterial effects of nonthermal decontamination processes, which are equivalent to thermal treatment, to ensure microbiological safety of raw ground chicken. Escherichia coli or Salmonella were inoculated into 25 g of raw ground chicken samples. The raw ground chicken samples were non-treated or treated with high hydrostatic pressure (HHP) at 500 MPa (1-7 min), light-emitting diode (LED) irradiation at 405 nm wavelength (30-120 min), and heat at 70℃, 90℃ (1-60 min), and 121℃ (1-15 min). E. coli and Salmonella cell counts were enumerated after treatments. Moreover, the color parameters of treated raw ground chicken were analyzed. HHP treatment reduced E. coli and Salmonella cell counts by more than 5 Log CFU/g and more than 6 Log CFU/g after 7 min and 1 min, respectively; these effects were equivalent to those of thermal treatment. However, LED irradiation reduced Salmonella cell counts by only 0.9 Log CFU/g after 90 min of treatment, and it did not reduce E. coli cell counts for 90 min. Compared with those of the non-treated samples, the ΔE (total color difference) values of the samples treated with HHP were high, whereas the ΔE values of the samples treated with LED irradiation were low (1.93-2.98). These results indicate that despite color change by HHP treatment, HHP treatment at 500 MPa could be used as a non-thermal decontamination process equivalent to thermal treatment.

Non-Thermal Atmospheric-Pressure Plasma Possible Application in Wound Healing

  • Haertel, Beate;von Woedtke, Thomas;Weltmann, Klaus-Dieter;Lindequist, Ulrike
    • Biomolecules & Therapeutics
    • /
    • v.22 no.6
    • /
    • pp.477-490
    • /
    • 2014
  • Non-thermal atmospheric-pressure plasma, also named cold plasma, is defined as a partly ionized gas. Therefore, it cannot be equated with plasma from blood; it is not biological in nature. Non-thermal atmospheric-pressure plasma is a new innovative approach in medicine not only for the treatment of wounds, but with a wide-range of other applications, as e.g. topical treatment of other skin diseases with microbial involvement or treatment of cancer diseases. This review emphasizes plasma effects on wound healing. Non-thermal atmospheric-pressure plasma can support wound healing by its antiseptic effects, by stimulation of proliferation and migration of wound relating skin cells, by activation or inhibition of integrin receptors on the cell surface or by its pro-angiogenic effect. We summarize the effects of plasma on eukaryotic cells, especially on keratinocytes in terms of viability, proliferation, DNA, adhesion molecules and angiogenesis together with the role of reactive oxygen species and other components of plasma. The outcome of first clinical trials regarding wound healing is pointed out.

Effect of non-thermal plasma on the shear bond strength of resin cements to Polyetherketoneketone (PEKK)

  • Labriaga, Wilmart;Song, So-Yeon;Park, Jin-Hong;Ryu, Jae-Jun;Lee, Jeong-Yol;Shin, Sang-Wan
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.6
    • /
    • pp.408-414
    • /
    • 2018
  • PURPOSE. This study aimed to assess the effect of non-thermal plasma on the shear bond strength of resin cements to polyetherketoneketone (PEKK) in comparison to other surface treatment methods. MATERIALS AND METHODS. Eighty PEKK discs were subjected to different surface treatments: (1) Untreated (UT); (2) Non-thermal plasma (NTP); (3) Sandblasting with $50{\mu}m$ $Al_2O_3$ particles (SB); and (4) Sandblasting + Non-thermal plasma (SB+NTP). After each surface treatment, the contact angle was measured. Surface conditioning with Visio.Link was applied in all groups after pre-treatment. RelyX Unicem resin cement was bonded onto the PEKK specimens. After fabrication of the specimens, half of each group (n=10) was initially tested, while the other half was subjected to thermocycling ($5^{\circ}C$ to $55^{\circ}C$ at 10,000 cycles). Shear bond strength (SBS) testing was performed using a universal testing machine, and failure modes were assessed using stereomicroscopy. The SBS results were analyzed statistically using one-way ANOVA followed by Tukey's post hoc test. Independent t-test was used to examine the effect of thermocycling (P<.05). RESULTS. The highest SBS values with or without thermocycling were observed with PEKK specimens that were treated with SB+NTP followed by the SB group. The lowest SBS results were observed in the UT groups. CONCLUSION. The shear bond strength between PEKK and resin cements was improved using non-thermal plasma treatment in combination with sandblasting.

Treatment of Refractory Melasma with Microwave-generated, Atmospheric-pressure, Non-thermal Nitrogen Plasma

  • Kim, Hyun-Jo;Kim, Heesu;Kim, Young Koo;Cho, Sung Bin
    • Medical Lasers
    • /
    • v.8 no.2
    • /
    • pp.74-79
    • /
    • 2019
  • Periorbital melasma is often refractory to treatment and highly associated with rebound hyperpigmentation or mottled hypopigmentation after laser treatment in Asian patients. In this report, we describe 2 patients with cluster-1 periorbital melasma and 1 patient with cluster-2 periorbital melasma who experienced remarkable clinical improvements after microwave-generated, atmospheric-pressure, non-thermal nitrogen plasma treatments. All patients exhibited limited clinical responses after combination treatments with topical bleaching agents, systemic oral tranexamic acid, and low-fluenced Q-switched neodymium (Nd):yttrium-aluminum-garnet (YAG) lasers. Low-energy nitrogen plasma treatment at 0.75 J elicited remarkable clinical improvement in the periorbital melasma lesions without post-laser therapy rebound hyperpigmentation and mottled hypopigmentation. We deemed that a single pass of nitrogen plasma treatment at 0.75 J induces mild microscopic thermal tissue coagulation and modification within the epidermis while preserving the integrity of the basement membrane in patients with periorbital melasma. Accordingly, nitrogen plasma-induced dermal tissue regeneration could play a role in the treatment of melasma lesions.

Non Thermal Process and Quality Changes of Foxtail Millet Yakju by Micro Filtration (미세여과에 의한 비 가열살균 좁쌀약주의 제조 및 저장 중 품질변화)

  • Kang, Young-Joo;Oh, Young-Ju;Koh, Jeong-Sam
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.2
    • /
    • pp.277-284
    • /
    • 2005
  • Micro-filtration (MF) or ultra-filtration (UF) system with hollow-fiber cartridge was introduced in order to improve the Quality level of commercial foxtail millet Yakju, which has an off-flavour and/or undesired colour after the thermal treatment. The filtration effects of cartridges such as MF (0.65, 0.45, 0.2, 0.1 $\mu$m) and UF (500 K dalton) were investigated. The physicochemical and sensory characteristics of the Yakju were then evaluated during the 6 months storage at room temperature. The exclusion ability of microorganism in samples was confirmed in all cartridges, but 0.45 pm MF-cartridge was suitable in the Yakju manufacture due to its superior filtration rate and efficiency. Changes in reducing sugar and colour difference of foxtail millet Yakju untreated or treated by heat ($65^{\circ}C$${\times}$10 min) were observed during the storage; after 6 months the L-value of thermal-treatment sample was decreased and its b-value, however, significantly increased so that its color became dark, in comparison to non-thermal treatment sample. This decrease of reducing sugar is assumed that color change is associated with non-enzymatic browning reaction. Sensory Quality of foxtail millet Yakju produced by non-thermal treatment was better than that of thermal treatment.

Non-thermal plasma technology for abatement of pollutant emission from marine diesel engine

  • Panomsuwan, Gasidit;Rujiravanit, Ratana;Ueno, Tomonaga;Saito, Nagahiro
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.10
    • /
    • pp.929-934
    • /
    • 2016
  • Plasma technology has long been regarded as a key essential tool in many industrial and technological sectors. However, the advancement of plasma technology in marine applications has not been fully realized yet. Herein, we present a short overview on the recent trends in utilization of plasma technology for air-pollution treatment in marine diesel exhaust. Four non-thermal plasma system, including electron beam dry scrubber (EBDS), dielectric barrier discharge (DBD), electron beam-microwave (EB-MW) plasma hybrid system, and plasma-catalytic hybrid system, are described with emphasis on their efficiency in removals of $NO_x$ and $SO_x$ gases. Non-thermal plasma has the great potential to be an efficient and environmentally compatible technique in simultaneous removals of $NO_x$ and $SO_x$ gases from the exhaust of marine diesel engine in the future.

An Experimental Study of Power Saving Technique in Non-thermal Plasma DeSOx/DeNOx Process (저온 플라즈마 탈황물질 공정의 운전전력 절감을 위한 실험연구)

  • 송영훈;최연석;김한석;신완호;길상인;정상현;최갑석;최현구;김석준
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.4
    • /
    • pp.487-494
    • /
    • 1996
  • Simultaneous effects of $C_2H_4$ injection and heterogeneous chemical reactions on non-thermal plasma process to remove $SO_2$ and NOx from flue gas were investigated in the present experimental study. The present results showed that 40% of the electrical power can be reduced in $C_2H_4$ injection and heterogeneous chemical reaction are simultaneously included in the non-thermal plasma precess. As an effort to apply the non-thermal plasma technique to practical flue gas treatment system, a wire-plate type reactor which has technically similar geometry of industrial electrostatic precipitators is used instead of other types of reactors, such as wire-cylinder, packed-bed and surface discharge which are inappropriate to industrial application. In the present study, the photo pictures of positive streamer corona taken by ICCD camera, voltage and current oscillograms, and design criteria of a wire-plate type reactor are also shown, which are needed for industrial application of the non-thermal plasma process.

  • PDF

Thermal flow intensity factor for non-homogeneous material subjected to unsteady thermal load (비정상 열 하중을 받는 이질재료의 열량 집중 계수 해석)

  • Kim, Gui-Seob
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.16 no.4
    • /
    • pp.26-34
    • /
    • 2008
  • This article provides a comprehensive treatment of cracks in non-homogeneous structural materials such as functionally graded materials (FGMs). It is assumed that the material properties depend only on the coordinate perpendicular to the crack surfaces and vary continuously along the crack faces. By using laminated composite plate model to simulate the material non-homogeneity, we present an algorithm for solving the system based on Laplace transform and Fourier transform techniques. Unlike earlier studies that considered certain assumed property distributions and a single crack problem, the current investigation studies multiple crack problem in the FGMs with arbitrarily varying material properties. As a numerical illustration, transient thermal flow intensity factors for a metal-ceramic joint specimen with a functionally graded interlayer subjected to sudden heating on its boundary are presented. The results obtained demonstrate that the present model is an efficient tool in the fracture analysis of non-homogeneous material with properties varying in the thickness direction.

  • PDF

The Effects of the Material of Pesticide-Proof Clothing on Human Comfort (농약방제복 소재의 차이가 인체 쾌적성에 미치는 영향)

  • Hwang, Kyoung-Sook;Kim, Kyung-Ran;Lee, Kyung-Suk;Kim, Kyung-Su
    • The Korean Journal of Community Living Science
    • /
    • v.17 no.4
    • /
    • pp.49-56
    • /
    • 2006
  • The purpose of this study was to evaluate the thermal and subjective comfort of various pesticide-proof clothes made from different material. Seven male adults took part in the study, conducted in a climate-chamber controlled with an ambient temperature of $30^{\circ}C$ and a relative humidity of 60%RH. The thermal and subjective responses of subjects wearing pesticide-proof clothing made of Goretex(coating treatment), polyester (water-repellent treatment), non-woven(coating) and nylon(coating) were measured. The main results were summarized as follows: (1) Change of rectal temperature and clothing microclimate were inhibited more effectively in pesticide-proof clothing made of Goretex, polyester and non-woven than nylon materials. (2) Mean skin temperature at the end of the experiment was significantly higher in subjects who wore nylon than non-woven and Goretex, and was lowest in those with pesticide-proof clothing made of polyester. (3) Change of heart rate was significantly lower in subjects with Goretex and polyester clothiing than those with non-woven, and in those with nylon, it was highest. (4) Subjective comfort was greater in subjects with Goretex, polyester and nonwoven clothing than nylon, except for thermal sensation. Thermal sensation was greater in order of polyester, Goretex, non-woven and nylon. Thus, it was concluded that pesticide-proof clothing made of Goretex, polyester and non-woven material could reduce thermal stress during the spraying of pesticides in summer.

  • PDF