• Title/Summary/Keyword: non-stationary input

Search Result 53, Processing Time 0.027 seconds

Robust Blind Source Separation to Noisy Environment For Speech Recognition in Car (차량용 음성인식을 위한 주변잡음에 강건한 브라인드 음원분리)

  • Kim, Hyun-Tae;Park, Jang-Sik
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.12
    • /
    • pp.89-95
    • /
    • 2006
  • The performance of blind source separation(BSS) using independent component analysis (ICA) declines significantly in a reverberant environment. A post-processing method proposed in this paper was designed to remove the residual component precisely. The proposed method used modified NLMS(normalized least mean square) filter in frequency domain, to estimate cross-talk path that causes residual cross-talk components. Residual cross-talk components in one channel is correspond to direct components in another channel. Therefore, we can estimate cross-talk path using another channel input signals from adaptive filter. Step size is normalized by input signal power in conventional NLMS filter, but it is normalized by sum of input signal power and error signal power in modified NLMS filter. By using this method, we can prevent misadjustment of filter weights. The estimated residual cross-talk components are subtracted by non-stationary spectral subtraction. The computer simulation results using speech signals show that the proposed method improves the noise reduction ratio(NRR) by approximately 3dB on conventional FDICA.

  • PDF

Adaptive Noise Canceller by Weight Updating Control Method for Speech Enhancement (음성향상을 위한 가중치 갱신제어방식의 적응소음제거기)

  • Kim, Gyu-Dong;Lee, Yun-Jung;Kim, Pil-Un;Chang, Yong-Min;Cho, Jin-Ho;Kim, Myoung-Nam
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.8
    • /
    • pp.1004-1016
    • /
    • 2007
  • In this paper we proposed a Weight-Update-Control Adaptive Noise Canceller which improves speech when environmental noise is stationary and it is hard to acquire a reference signal. Adaptive Noise Canceller(ANC) needs a reference signal, but it is not easy to measure pure noise without voice for reference in factory. Because there are mixed various mechanical noise and workers' voice. Therefore ANC is not suitable to reduce background noise. So we proposed the method that uses an arbitrary constant as an input signal and inputs microphone signal to the reference signal. The noise is eliminated using updated weights in non-speech range. In speech range the weight is fixed and the modified voice is acquired then voice is restored through transversal filter. The proposed method is based on facts that the factory noise is stationary and the noise is not changed in short conversation range. As a result of simulation using MATLAB, we confirmed that the proposed method is effective for reducing factory noise and has high signal to noise ratio(SNR).

  • PDF

Gain Compensation Method for Codebook-Based Speech Enhancement (코드북 기반 음성향상 기법을 위한 게인 보상 방법)

  • Jung, Seungmo;Kim, Moo Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.165-170
    • /
    • 2014
  • Speech enhancement techniques that remove surrounding noise are stressed to preprocessor of speech recognition. Among the various speech enhancement techniques, Codebook-based Speech Enhancement (CBSE) operates efficiently in non-stationary noise environments. But, CBSE has some problems that inaccurate gains can be estimated if mismatch occur between input noisy signal and trained speech/noise codevectors. In this paper, the Normalized Weighting Factor (NWF) is calculated by long-term noise estimation algorithm based on Signal-to-Noise Ratio, compensated to the conventional inaccurate gains. The proposed CBSE shows better performance than conventional CBSE.

Structural Analysis of S-cam Brake Shoe for Commercial Vehicle by FEM (FEM을 이용한 상용차용 S-cam 브레이크슈의 구조해석)

  • Suh, Chang-Min;Jee, Hyun-Chul
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.69-77
    • /
    • 2009
  • Structural analysis of a brake shoe for commercial vehicle was performed using finite element method. Since the strength of a brake shoe is affected by the magnitude and distribution shape of the contact pressure with the drum, the contact pressure between the shoe friction material and drum was calculated using a 2-Dimensional non-linear contact analysis in a state. And the brake was actuated by input air pressure and the drum of it was calculated both stationary and dynamic based on forced torque applied to the drum during the static state analysis. The results of the above analysis were then used as the load boundary conditions for a 3-Dimensional shoe model analysis to determine the maximum strain on the shoes. In the analysis model, the values of tensile test were used for the material properties of the brake shoes and drum, while the values of compression test were used for the friction material. We assumed it as linear variation, even though the properties of friction material were actually non-linear. The experiments were carried out under the same analysis conditions used for fatigue test and under the same brake system which equipped with a brake drum based on the actual axle state in a vehicle. The strains were measured at the same locations where the analysis was performed on the shoes. The obtained results of the experiment matched well with those from the analysis. Consequently, the model used in this study was able to determine the stress at the maximum air pressure at the braking system, thereby a modified shoe model in facilitating was satisfied with the required endurance strength in the vehicle.

Stochastic Analysis in the Generation of Floor Response Spectra for Liner Systems with Proportional Damping (추계학적(推計學的) 해석법(解析法)에 의한 선형비례감쇠(線形比例減衰) 시스템의 층응답(層應答)스펙트럼)

  • Park, Young Suk;Seo, Jeong Moon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.77-85
    • /
    • 1988
  • A stochchastic analysis procedure of generating floor response spectra for proportionally damped linear systems subject to earthquake loading is presented. Theories of random vibration and mode acceleration method are used in the formulation of governing equations. The structure-oscillator interaction is not considered. It is assumed that the input motions and oscillator responses are stationary Gaussian processes with mean zero. The nonstationary characteristics of earthquake motion are incorporated in the peak factor which is based on Vanmarcke's theory. Floor response spectra for both resonance and non-resonance cases are calculated under the assumption that the peak factors for structure and oscillator are equal to that for ground response spectrum. The validity of this method is demonstrated by comparing the results obtained by proposed method with those by time history analyses. The results obtained by this method are conservative and accurate with tolerable precision. This method saves much computing time compared with time history analysis method.

  • PDF

Frame Reliability Weighting for Robust Speech Recognition (프레임 신뢰도 가중에 의한 강인한 음성인식)

  • 조훈영;김락용;오영환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.323-329
    • /
    • 2002
  • This paper proposes a frame reliability weighting method to compensate for a time-selective noise that occurs at random positions of speech signal contaminating certain parts of the speech signal. Speech frames have different degrees of reliability and the reliability is proportional to SNR (signal-to noise ratio). While it is feasible to estimate frame Sl? by using the noise information from non-speech interval under a stationary noisy situation, it is difficult to obtain noise spectrum for a time-selective noise. Therefore, we used statistical models of clean speech for the estimation of the frame reliability. The proposed MFR (model-based frame reliability) approximates frame SNR values using filterbank energy vectors that are obtained by the inverse transformation of input MFCC (mal-frequency cepstral coefficient) vectors and mean vectors of a reference model. Experiments on various burnt noises revealed that the proposed method could represent the frame reliability effectively. We could improve the recognition performance by using MFR values as weighting factors at the likelihood calculation step.

The Buck DC-DC Convener with Non-Linear Instantaneous Following PWM Control Method (비선형 순시추종형 PWM 제어기법을 적용한 강압형 DC-DC 컨버터)

  • 김상돈;라병훈;이현우;김광태
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.2
    • /
    • pp.73-80
    • /
    • 2003
  • This Paper Proposes instantaneous following control method to control pulse modulation switching converter by using principle that reset time of integrator is inverse proportion in size of integrator input voltage. proposed control method acts of fixed frequency and control switch calculates time of become turn on and turn off using analog integrator. Duty ratio that express switching time of converter is depended on mean value of switching variable and following time consists in one cycle. Follow to do order exactly stationary state as well as transition state, and controller corrects mean value of control variable and control reference value and control as control error gets into zero. Proposed control method could experimented and know that experiment result and theory are agreeing well through this using the buck converter.

Web-Based Data Processing and Model Linkage Techniques for Agricultural Water-Resource Analysis (농촌유역 물순환 해석을 위한 웹기반 자료 전처리 및 모형 연계 기법 개발)

  • Park, Jihoon;Kang, Moon Seong;Song, Jung-Hun;Jun, Sang Min;Kim, Kyeung;Ryu, Jeong Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.5
    • /
    • pp.101-111
    • /
    • 2015
  • Establishment of appropriate data in certain formats is essential for agricultural water cycle analysis, which involves complex interactions and uncertainties such as climate change, social & economic change, and watershed environmental change. The main objective of this study was to develop web-based Data processing and Model linkage Techniques for Agricultural Water-Resource analysis (AWR-DMT). The developed techniques consisted of database development, data processing technique, and model linkage technique. The watershed of this study was the upper Cheongmi stream and Geunsam-Ri. The database was constructed using MS SQL with data code, watershed characteristics, reservoir information, weather station information, meteorological data, processed data, hydrological data, and paddy field information. The AWR-DMT was developed using Python. Processing technique generated probable rainfall data using non-stationary frequency analysis and evapotranspiration data. Model linkage technique built input data for agricultural watershed models, such as the TANK and Agricultural Watershed Supply (AWS). This study might be considered to contribute to the development of intelligent watercycle analysis by developing data processing and model linkage techniques for agricultural water-resource analysis.

State detection of explosive welding structure by dual-tree complex wavelet transform based permutation entropy

  • Si, Yue;Zhang, ZhouSuo;Cheng, Wei;Yuan, FeiChen
    • Steel and Composite Structures
    • /
    • v.19 no.3
    • /
    • pp.569-583
    • /
    • 2015
  • Recent years, explosive welding structures have been widely used in many engineering fields. The bonding state detection of explosive welding structures is significant to prevent unscheduled failures and even catastrophic accidents. However, this task still faces challenges due to the complexity of the bonding interface. In this paper, a new method called dual-tree complex wavelet transform based permutation entropy (DTCWT-PE) is proposed to detect bonding state of such structures. Benefiting from the complex analytical wavelet function, the dual-tree complex wavelet transform (DTCWT) has better shift invariance and reduced spectral aliasing compared with the traditional wavelet transform. All those characters are good for characterizing the vibration response signals. Furthermore, as a statistical measure, permutation entropy (PE) quantifies the complexity of non-stationary signals through phase space reconstruction, and thus it can be used as a viable tool to detect the change of bonding state. In order to more accurate identification and detection of bonding state, PE values derived from DTCWT coefficients are proposed to extract the state information from the vibration response signal of explosive welding structure, and then the extracted PE values serve as input vectors of support vector machine (SVM) to identify the bonding state of the structure. The experiments on bonding state detection of explosive welding pipes are presented to illustrate the feasibility and effectiveness of the proposed method.

Multi-channel input-based non-stationary noise cenceller for mobile devices (이동형 단말기를 위한 다채널 입력 기반 비정상성 잡음 제거기)

  • Jeong, Sang-Bae;Lee, Sung-Doke
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.7
    • /
    • pp.945-951
    • /
    • 2007
  • Noise cancellation is essential for the devices which use speech as an interface. In real environments, speech quality and recognition rates are degraded by the auditive noises coming near the microphone. In this paper, we propose a noise cancellation algorithm using stereo microphones basically. The advantage of the use of multiple microphones is that the direction information of the target source could be applied. The proposed noise canceller is based on the Wiener filter. To estimate the filter, noise and target speech frequency responses should be known and they are estimated by the spectral classification in the frequency domain. The performance of the proposed algorithm is compared with that of the well-known Frost algorithm and the generalized sidelobe canceller (GSC) with an adaptation mode controller (AMC). As performance measures, the perceptual evaluation of speech quality (PESQ), which is the most widely used among various objective speech quality methods, and speech recognition rates are adopted.