• Title/Summary/Keyword: non-starch polysaccharides

Search Result 30, Processing Time 0.029 seconds

Effects of NSP Degrading Enzyme on In vitro Digestion of Barley

  • Li, W.F.;Sun, J.Y.;Xu, Z.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.1
    • /
    • pp.122-126
    • /
    • 2004
  • A digestion trial in vitro was conducted to study effects of supplementation of NSP (non-starch polysaccharides) degrading enzyme (feed grade) on cell wall degradation and digestibility of nutrients in barley. The slices of barley were soaked in distilled water with or without 0.15% non-starch polysaccharides degrading enzyme. Microscopic examination of the slices showed that the endosperm cell wall of barley was completely degraded by the non-starch polysaccharides degrading enzyme. The residues and supernatant of digesta in vitro were separated by filtration with 0.1 mm nylon fabric. The residues were used for measurement of crude protein, crude fat, crude fiber, and moisture. The supernatant was used for determination of viscosity, as well as amino-nitrogen and glucose content. The results showed that compared with the control, the amino-nitrogen and glucose content of the supernatant increased by 17.58% (p<0.05) and 10.26% (p<0.05), respectively, while viscosity did not change. Enzyme supplementation increased the digestibilities of dry matter, crude protein, nitrogen-free extract, crude fat and crude fiber of barley by 18.1% (p<0.05), 20.3% (p<0.05), 16.4% (p<0.05), 26.9% (p<0.05) and 30.0% (p<0.05), respectively. The present study suggests that cell wall hydrolysis may contribute to improved nutrient digestion in vivo when non-starch polysaccharides degrading enzymes are fed to swine.

Effect of Non-starch Polysaccharides on Mucin Secretion and Endogenous Amino Acid Losses in Pigs

  • Morel, P.C.H.;Padilla, R.M.;Ravindran, G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.9
    • /
    • pp.1332-1338
    • /
    • 2003
  • This study was undertaken to examine the influence of soluble non-starch polysaccharides on growth performance, mucin secretion, and endogenous amino acid flows in weaner pigs. Different levels (0, 4 and 7.5%) of purified corn arabinoxylan (AX) or barley $\beta$-glucan extract (BG) were substituted for cellulose in a purified diet based on starch, sucrose and enzymatically hydrolyzed casein. All diets contained titanium oxide as an indigestible marker. Each experimental diet was fed to five, 6-wk old weaner pigs for 21 days. Average daily gain (p<0.05) and feed conversion ratio (p<0.01) were improved with dietary inclusion of 7.5% AX and BG, indicating high degradation rates of AX and BG in pigs. Crude mucin contents and endogenous nitrogen flow were increased (p<0.05) with increased levels of AX, but not with BG. Numerical increases in endogenous amino acid flow (EAAF) were observed with increased levels of AX but no definite trend with BG. Endogenous amino acid flow in pigs fed mixed NSP diets (4% BG and 3.5% cellulose) was significantly higher (p<0.05) than those fed 7.5% BG diets. Among diets containing pure sources of soluble non-starch polysaccharides, endogenous amino acid flows were highest in 7.5% AX (p<0.05), intermediate in BG, and lowest in control diet. Increased flows (p<0.01) of threonine, proline and serine in pigs fed 7.5% AX diets are consistent with the increased flow of crude mucin determined in this treatment. In conclusion, mucin and endogenous amino acid flows were increased with dietary inclusion of AX, which could be related to its physicochemical property, particularly its high water-holding capacity. In contrast, $\beta$-glucan, due to its high degradation rate in pig, may be considered as unimportant factor in inducing mucin and endogenous amino acid secretions, at least at levels such as those used in this study.

Effect of Non-starch Polysaccharides and Resistant Starch on Mucin Secretion and Endogenous Amino Acid Losses in Pigs

  • Morel, Patrick C.H.;Melai, J.;Eady, S.L.;Coles, G.D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.11
    • /
    • pp.1634-1641
    • /
    • 2005
  • Generally, dietary fibre (DF) includes lignin, non-starch polysaccharides (NSP) and resistant starch (RS). In monogastric species, low levels of dietary fibre in the diet are associated with various diseases and high levels reduce nutrient digestibilities. In this study, the effects of different types and levels of NSP (soluble: $\beta$-glucan, insoluble cellulose) and resistant starch on mucin secretion and endogenous nitrogen and amino acid losses in pigs were investigated. A total of 25 five-week-old weaner pigs (9.5 kg${\pm}$1.5 kg), were randomly allocated to each of five experimental diets. Different levels of purified barley $\beta$-glucan (BG) extract (5 or 10% of $Glucagel^{(R)}$ $\beta$-glucan, providing 4 or 8% of BG in the diet), and resistant starch (RS) (8.3 or 16.6% of Hi-$Maize^{TM}$, providing 5 or 10% RS in the diet) were substituted for wheat starch in a purified diet in which enzymatically-hydrolysed casein was the sole source of protein. The diets were fed for 21 days. No statistically significant difference between treatments (p>0.05) was observed for growth performance and organs weights. No difference in ileal starch digestibility was observed between pigs on the cellulose or $\beta$-glucan diets. However, as the level of resistant starch in the diet increased the ileal starch digestibility decreased (p<0.05). The inclusion of resistant starch in the diet (5 or 10%) did not increase mucin production when compared with the cellulose-only diet. However, as the level of beta-glucan in the diet increased, both crude mucin in the digesta dry matter and per kg dry matter intake increased (p<0.05). Pigs fed the diet containing 8% of beta-glucan had higher endogenous loss flow than those fed the diets including 5 or 10% of resistant starch or 4% of $\beta$-glucan. In conclusion, dietary inclusion of resistant starch increased the level of starch reaching the large intestine without any effect on mucin secretion, or endogenous nitrogen or amino acid losses content in the small intestine. The addition of $\beta$-glucan to a diet containing cellulose increases both mucin secretion and endogenous amino acid and nitrogen losses in the small intestine.

Soy Oligosaccharides and Soluble Non-starch Polysaccharides: A Review of Digestion, Nutritive and Anti-nutritive Effects in Pigs and Poultry

  • Choct, M.;Dersjant-Li, Y.;McLeish, J.;Peisker, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.10
    • /
    • pp.1386-1398
    • /
    • 2010
  • Soybean contains a high concentration of carbohydrates that consist mainly of non-starch polysaccharides (NSP) and oligosaccharides. The NSP can be divided into insoluble NSP (mainly cellulose) and soluble NSP (composed mainly of pectic polymers, which are partially soluble in water). Monogastric animals do not have the enzymes to hydrolyze these carbohydrates, and thus their digestion occurs by means of bacterial fermentation. The fermentation of soybean carbohydrates produces short chain fatty acids that can be used as an energy source by animals. The utilization efficiency of the carbohydrates is related to the chemical structure, the level of inclusion in the diet, species and age of the animal. In poultry, soluble NSP can increase digesta viscosity, reduce the digestibility of nutrients and depress growth performance. In growing pigs, these effects, in particular the effect on gut viscosity, are often not so obvious. However, in weaning piglets, it is reported that soy oligosaccharides and soluble NSP can cause detrimental effects on intestinal health. In monogastrics, consideration must be given to the anti-nutritive effect of the NSP on nutrient digestion and absorption on one hand, as well as the potential benefits or detriments of intestinal fermentation products to the host. This mirrors the needs for i) increasing efficiency of utilization of fibrous materials in monogastrics, and ii) the maintenance and improvement of animal health in antibiotic-free production systems, on the other hand. For example, ethanol/water extraction removes the low molecular weight carbohydrate fractions, such as the oligosaccharides and part of the soluble pectins, leaving behind the insoluble fraction of the NSP, which is devoid of anti-nutritive activities. The resultant product is a high quality soy protein concentrate. This paper presents the composition and chemical structures of carbohydrates present in soybeans and discusses their nutritive and anti-nutritive effects on digestion and absorption of nutrients in pigs and poultry.

Multicarbohydrase Enzymes for Non-ruminants

  • Masey O'Neill, H.V.;Smith, J.A.;Bedford, M.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.2
    • /
    • pp.290-301
    • /
    • 2014
  • The first purpose of this review is to outline some of the background information necessary to understand the mechanisms of action of fibre-degrading enzymes in non-ruminants. Secondly, the well-known and understood mechanisms are described, i) eliminating the nutrient encapsulating effect of the cell wall and ii) ameliorating viscosity problems associated with certain Non Starch Polysaccharides, particularly arabinoxylans and ${\beta}$-glucans. A third, indirect mechanism is then discussed: the activity of such enzymes in producing prebiotic oligosaccharides and promoting beneficial cecal fermentation. The literature contains a wealth of information on various non starch polysaccharide degrading enzyme (NSPase) preparations and this review aims to conclude by discussing this body of work, with reference to the above mechanisms. It is suggested that the way in which multi- versus single-component products are compared is often flawed and that some continuity should be employed in methods and terminology.

Characteristics of Water Soluble Fractions of Wheat Bran Treated with Various Thermal Processes (열처리 밀기울의 수용성 분획의 특징)

  • Hwang, Jae-Kwan;Kim, Chong-Tai;Cho, Sung-Ja;Kim, Chul-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.934-938
    • /
    • 1995
  • Water soluble fractions (WSF) of wheat bran treated with thermal processes such as autoclaving, microwaving and extrusion were characterized to investigate the structural response of plant cell wall to thermal and mechanical energy. From the chemical analysis and gel filtration chromatography of WSF, gelatinization of starch was found to be the primary solubilizing mechanism of wheat bran, followed by the structural disintegration of fibrous non-starch cell wall materials. It was also found that extrusion process resulted in degrading relatively higher molecular weight non-starch polysaccharides from the cell wall. GC analysis of water soluble non-starch polysaccharides indicates that the arabinoxylan residues of cell wall are the most susceptible site to thermal treatments studied. In particular, the degrading degree of cell wall of wheat bran is the most significant for extrusion accompanying both high temperature and high shear.

  • PDF

Polysaccharides Obtained from Vegetables: an effective source of alternative excipient

  • Ananta Choudhury;Satyabrat Sarma;Snehashis Sarkar;Madhusmita Kumari;Biplab Kumar Dey
    • Journal of Pharmacopuncture
    • /
    • v.25 no.4
    • /
    • pp.317-325
    • /
    • 2022
  • Polymers are the major constructive material of pharmaceutical formulations that play a prime role in designing effective drug-delivery systems and releasing drugs at their sites of application. Polymers are composed of multiple repeating units of high molecular mass components with attendant properties. Most synthetic polymers are non-biocompatible, expensive, and extremely inclined to deliver adverse impacts. Meanwhile, edible polymers obtained from natural sources have gained remarkable recognition for their promising use in modern medicine. Moreover, polymers derived from natural sources are generally preferred due to certain of their unique features such as abundant availability, biocompatibility, nontoxicity, economical, safe, and effective functions that fit the purpose. Polysaccharides including starch, cellulose, hemicellulose, pectin, and mucilage are identified as a major class of naturally obtained molecules that have a substantial role as functional polymers. This review summarizes the potential role of polysaccharides derived from vegetable sources such as adhesives, anticaking agents, binders, disintegrants, emulsifiers, film-framing agents, and thickeners. This is simply an opportunity to abandon synthetic excipients that hurt our bodies and think back to nature from where we originate.

Investigation of the Effects of Oat and Barley Feeding on Performance and Some Lipid Parameters in Table Ducks

  • Orosz, Szilvia;Husveth, Ferenc;Vetesi, Margit;Kiss, Laszlo;Mezes, Miklos
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.7
    • /
    • pp.1076-1083
    • /
    • 2007
  • The effects of barley and oat feeding in table duck were investigated. During a 49-day growing period a corn-based diet was supplemented by 45% barley and 45% oats (isonitrogenously and iso-energetically), respectively. Daily feed intake, FCR-, and weight gain were measured. Abdominal fat, liver, and gizzard weights were determined and dry matter, protein, fat content and fatty acid composition of femoro-tibial muscles and liver fat were measured on the $35^{th}$, $42^{nd}$ and $49^{th}$ days of age. Feeding 45% barley caused a decrease of growth rate ($p{\leq}0.05$) during the first 4 weeks, which was followed by a rapid, compensatory growth from the $6^{th}$ week of age ($p{\leq}0.05$). Both barley and oat supplementation increased protein ($p{\leq}0.05$), while decreasing fat ($p{\leq}0.05$) and dry matter ($p{\leq}0.05$) content of the liver. Feeding of 45% oats in the diet decreased the monounsaturated fatty acid ($p{\leq}0,05$) and increased the n-6 ($p{\leq}0,05$), n-3 ($p{\leq}0,05$) and total polyunsaturated ($p{\leq}0,05$) fatty acid content of the intramuscular fat owing to the high proportion of soluble non-starch polysaccharides (NSP) in the diet. This might be explained by the more pronounced decrease in digestibility of saturated than unsaturated fatty acids in birds fed a soluble NSP-enriched diet. This result might be caused by the "cage effect" of soluble NSP trapping the bile salts which are more important for the absorption of saturated than polyunsaturated fatty acids.

Chemical Characterization and Water Holding Capacity of Fibre-rich Feedstuffs Used for Pigs in Vietnam

  • Ngoc, T.T.B.;Len, N.T.;Lindberg, J.E.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.6
    • /
    • pp.861-868
    • /
    • 2012
  • During two years, four samples per year were collected in Vietnam from rice bran, cassava residue, brewer's grain, tofu residue, soybean meal, coconut cake, sweet potato vines and water spinach for chemical analysis and assessment of water holding capacity (WHC). The selected feedstuffs represent fibre-rich plant sources and agro-industry co-products commonly used in pig feeding in Vietnam. The content (g/kg DM) of crude protein (CP), ether extract (EE) and non-starch polysaccharides (NSP) varied between feedstuffs and ranged from 21 to 506 for CP, from 14 to 118 for EE and from 197 to 572 for NSP. Cassava residue had a high starch content of 563 g/kg DM, while sweet potato vines, water spinach, coconut cake and soybean meal had a high content of sugars (63-71 g/kg DM). The content of individual neutral sugars varied between feed ingredients, with the highest content of arabinose, galactose and glucose in tofu residue, the highest content of xylose in brewer's grain and the highest content of mannose in coconut cake. The content of uronic acid was high for cassava residue, tofu residue, sweet potato vines and water spinach (57-88 g/kg DM). The content of soluble non-cellulosic polysaccharides (S-NCP) was positively correlated ($r^2$ = 0.82) to the WHC. The content (g/kg DM) of CP, NDF, neutral sugars, total NSP, total NCP, S-NCP and total dietary fibre in tofu residue, water spinach and coconut cake varied (p<0.05) between years. In conclusion, diet formulation to pigs can be improved if the variation in chemical composition of the fibre fraction and in WHC between potential feed ingredients is taken into account.

The Effect of Variety and Growing Conditions on the Chemical Composition and Nutritive Value of Wheat for Broilers

  • Ball, M.E.E.;Owens, B.;McCracken, K.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.3
    • /
    • pp.378-385
    • /
    • 2013
  • The aim of this study was to examine the effect of variety and growing conditions of wheat on broiler performance and nutrient digestibility. One hundred and sixty-four wheat samples, collected from a wide range of different sources, locations, varieties and years, were analyzed for a range of chemical and physical parameters. Chemical and physical parameters measured included specific weight, thousand grain weight (TG), in vitro viscosity, gross energy, N, NDF, starch, total and soluble non-starch polysaccharides (NSP), lysine, threonine, amylose, hardness, rate of starch digestion and protein profiles. Ninety-four of the wheat samples were selected for inclusion in four bird trials. Birds were housed in individual wire metabolizm cages from 7 to 28 d and offered water and feed ad libitum. Dry matter intake (DMI), live weight gain (LWG) and gain:feed were determined weekly. A balance collection was carried out from 14 to 21 d for determination of apparent metabolizable energy (AME), ME:gain, DM retention, oil and NDF digestibility. At 28 d the birds were sacrificed, the contents of the jejunum removed for determination of in vivo viscosity and the contents of the ileum removed for determination of ileal DM, starch and protein digestibility. The wheat samples used in the study had wide-ranging chemical and physical parameters, leading to bird DMI, LWG, gain:feed, ME:GE, AME content and ileal starch and protein digestibility being significantly (p<0.05) affected by wheat sample. A high level of N fertilizer application to the English and NI wheat samples tended to benefit bird performance, with increases of up to 3.4, 7.2 and 3.8% in DMI, LWG and gain:feed, respectively. Fungicide application also appeared to have a positive effect on bird performance, with fungicide treated (+F) wheat increasing bird DMI, LWG and gain:feed by 6.6, 9.3 and 2.7%, over the non-fungicide treated (-F) wheats. An increase (p<0.1) of 9.3% in gain:feed was also observed at the low seed rate of 40 compared to 640 seeds/$m^2$. It was concluded that the type of wheat sample and environmental growing conditions significantly affects bird performance when fed wheat-based diets.