DOI QR코드

DOI QR Code

Polysaccharides Obtained from Vegetables: an effective source of alternative excipient

  • Ananta, Choudhury (Faculty of Pharmaceutical Science, Assam Down Town University) ;
  • Satyabrat, Sarma (Faculty of Pharmaceutical Science, Assam Down Town University) ;
  • Snehashis, Sarkar (Faculty of Pharmaceutical Science, Assam Down Town University) ;
  • Madhusmita, Kumari (Faculty of Pharmaceutical Science, Assam Down Town University) ;
  • Biplab Kumar, Dey (Faculty of Pharmaceutical Science, Assam Down Town University)
  • Received : 2021.04.19
  • Accepted : 2022.12.01
  • Published : 2022.12.30

Abstract

Polymers are the major constructive material of pharmaceutical formulations that play a prime role in designing effective drug-delivery systems and releasing drugs at their sites of application. Polymers are composed of multiple repeating units of high molecular mass components with attendant properties. Most synthetic polymers are non-biocompatible, expensive, and extremely inclined to deliver adverse impacts. Meanwhile, edible polymers obtained from natural sources have gained remarkable recognition for their promising use in modern medicine. Moreover, polymers derived from natural sources are generally preferred due to certain of their unique features such as abundant availability, biocompatibility, nontoxicity, economical, safe, and effective functions that fit the purpose. Polysaccharides including starch, cellulose, hemicellulose, pectin, and mucilage are identified as a major class of naturally obtained molecules that have a substantial role as functional polymers. This review summarizes the potential role of polysaccharides derived from vegetable sources such as adhesives, anticaking agents, binders, disintegrants, emulsifiers, film-framing agents, and thickeners. This is simply an opportunity to abandon synthetic excipients that hurt our bodies and think back to nature from where we originate.

Keywords

Acknowledgement

Authors would like to acknowledge the Faculty of Pharmaceutical science of Assam down town University for providing library facilicites to carryout the work.

References

  1. Saha T, Masum ZU, Mondal SK, Hossain MS, Jobaer MA, Shahin RI, et al. Application of natural polymers as pharmaceutical excipients. Glob J Life Sci Biol Res. 2018;4:1.
  2. Bhattacharya R, Pharm M, Borkar S, Sathawane AP. Current review on herbal pharmaceutical binders. Res J Pharm Dos Forms Technol. 2019;11(4):288-95. https://doi.org/10.5958/0975-4377.2019.00048.X
  3. Poli A, Anzelmo G, Fiorentino G, Nicolaus B, Tommonaro G, Donato PD. Polysaccharides from wastes of vegetable industrial processing: new opportunities for their eco-friendly re-use. In: Elnashar M, editor. Biotechnology of biopolymers. London: IntechOpen; 2011. p. 33-56.
  4. Gopinath V, Saravanan S, Al-Maleki AR, Ramesh M, Vadivelu J. A review of natural polysaccharides for drug delivery applications: special focus on cellulose, starch and glycogen. Biomed Pharmacother. 2018;107:96-108.
  5. Chavhan S, Shinde SA, Sapkal S, Shrikhande VN. Herbal excipients in novel drug delivery systems. Asian J Pharm Res. 2017;7(2):111-7. https://doi.org/10.5958/2231-5691.2017.00019.3
  6. Ngwuluka NC. Responsive polysaccharides and polysaccharides-based nanoparticles for drug delivery. In: Makhlouf ASH, Abu-Thabit NY, editors. Stimuli responsive polymeric nanocarriers for drug delivery applications, Volume 1. Duxford: Woodhead; 2018. p. 531-54.
  7. Torres FG, Troncoso OP, Pisani A, Gatto F, Bardi G. Natural polysaccharide nanomaterials: an overview of their immunological properties. Int J Mol Sci. 2019;20(20):5092.
  8. Yadav H, Karthikeyan C. Natural polysaccharides: structural features and properties. In: Maiti S, Jana S, editors. Polysaccharide carriers for drug delivery. Duxford: Woodhead; 2019. p. 1-17.
  9. Kulkarni VS, Butte KD, Rathod SS. Natural polymers - a comprehensive review. Int J Res Pharm Biomed Sci. 2012;3(4):1597-613.
  10. Pijper A. Methylcellulose and bacterial motility. J Bacteriol. 1947;53(3):257-69. https://doi.org/10.1128/jb.53.3.257-269.1947
  11. Ralet M, Buffetto F, Capron I, Guillon F. Cell wall polysaccharides of potato. In: Singh J, Kaur L, editors. Advances in potato chemistry and technology. 2nd ed. London: Elsevier Inc.; 2016. p. 33-56.
  12. Zhang J, Wen C, Zhang H, Duan Y. Review of isolation, structural properties, chain conformation, and bioactivities of psyllium polysaccharides. Int J Biol Macromol. 2019;139:409-20. https://doi.org/10.1016/j.ijbiomac.2019.08.014
  13. Zhao T, Chen Z, Lin X, Ren Z, Li B, Zhang Y. Preparation and characterization of microcrystalline cellulose (MCC) from tea waste. Carbohydr Polym. 2018;184:164-70. https://doi.org/10.1016/j.carbpol.2017.12.024
  14. Tank D, Karan K, Gajera BY, Dave RH. Investigate the effect of solvents on wet granulation of microcrystalline cellulose using hydroxypropyl methylcellulose as a binder and evaluation of rheological and thermal characteristics of granules. Saudi Pharm J. 2018;26(4):593-602. https://doi.org/10.1016/j.jsps.2018.02.007
  15. Berglund J, Mikkelsen D, Flanagan BM, Dhital S, Gaunitz S, Henriksson G, et al. Wood hemicelluloses exert distinct biomechanical contributions to cellulose fibrillar networks. Nat Commun. 2020;11(1):4692.
  16. Olorunsola EO, Akpabio EI, Adedokun MO, Ajibola DO. Emulsifying properties of hemicelluloses. In: Karakus S, editor. Science and technology behind nanoemulsions. London: IntechOpen; 2018. p. 29-42.
  17. Dai J, Chen J, Qi J, Ding M, Liu W, Shao T, et al. Konjac glucomannan from Amorphophallus konjac enhances immunocompetence of the cyclophosphamide-induced immunosuppressed mice. Food Sci Nutr. 2020;9(2):728-35.
  18. Martins JG, Camargo SEA, Bishop TT, Popat KC, Kipper MJ, Martins AF. Pectin-chitosan membrane scaffold imparts controlled stem cell adhesion and proliferation. Carbohydr Polym. 2018;197:47-56. https://doi.org/10.1016/j.carbpol.2018.05.062
  19. Srivastava P, Malviya R. Sources of pectin, extraction and its applications in pharmaceutical industry - an overview. Indian J Nat Prod Resour. 2011;2(1):10-8.
  20. Sriamornsak P, Thirawong N, Weerapol Y, Nunthanid J, Sungthongjeen S. Swelling and erosion of pectin matrix tablets and their impact on drug release behavior. Eur J Pharm Biopharm. 2007;67(1):211-9. https://doi.org/10.1016/j.ejpb.2006.12.014
  21. Li B, Lu F, Nan H, Liu Y. Isolation and structural characterisation of okara polysaccharides. Molecules. 2012;17(1):753-61. https://doi.org/10.3390/molecules17010753
  22. Cotrim MAP, Mottin AC, Ayres E. Preparation and characterization of okra mucilage (Abelmoschus esculentus) edible films. Macromol Symp. 2016;367(1):90-100. https://doi.org/10.1002/masy.201600019
  23. Chavan JK, Dalvi U, Chavan UD. Isolation of lady's finger (okra) stem mucilage as clarificant in jaggery preparation. J Food Sci Technol. 2007;44(1):59-61.
  24. Kim SJ, Chandrasekar B, Rea AC, Danhof L, Zemelis-Durfee S, Thrower N, et al. The synthesis of xyloglucan, an abundant plant cell wall polysaccharide, requires CSLC function. Proc Natl Acad Sci U S A. 2020;117(33):20316-24. https://doi.org/10.1073/pnas.2007245117
  25. Barclay T, Ginic-Markovic M, Cooper P, Petrovsky N. Inulin - a versatile polysaccharide: use as food chemical and pharmaceutical agent. J Excip Food Chem. 2010;1(3):27-50.
  26. Rodriguez A, Alfaro J, Vargas R, Pacheco J, Araya J. Evaluation of mucilages isolated from seeds of Hyptis suaveolens, Salvia hispanica and Linum usitatissimum as pharmaceutical excipients in solid and liquid formulations. J Excip Food Chem. 2018;9(3): 67-79.
  27. Lavanya D, Kulkarni P, Dixit M, Raavi PK, Krishna LNV. Sources of cellulose and their applications - a review. Int J Drug Formul Res. 2011;2(6):19-38.
  28. Debnath S, Yadav CN, Nowjiya N, Prabhavathi M, SaiKumar A, Krishna PS, et al. A review on natural binders used in pharmacy. Asian J Pharm Res. 2019;9(1):55-60. https://doi.org/10.5958/2231-5691.2019.00009.1
  29. Shukla RK, Tiwari A. Carbohydrate polymers: applications and recent advances in delivering drugs to the colon. Carbohydr Polym. 2012;88(2):399-416.
  30. Builders PF, Arhewoh MI. Pharmaceutical applications of native starch in conventional drug delivery. Starch-Starke. 2016;68(9-10):864-73. https://doi.org/10.1002/star.201500337
  31. Garcia MAVT, Garcia CF, Faraco AAG. Pharmaceutical and biomedical applications of native and modified starch: a review. Starch-Starke. 2020;72(7-8):1900270.
  32. Manoharan C, Basarkar A, Singh J. Various pharmaceutical disperse systems. In: Kulshreshtha A, Singh O, Wall G, editors. Pharmaceutical suspensions. New York (NY): Springer; 2010. p. 1-37.
  33. Malviya R, Srivastava P, Bansal M, Sharma PK. Formulation and optimization of sustained release matrix tablets of diclofenac sodium using pectin as release modifier. Int J Drug Dev Res. 2010;2(2):330-5.
  34. Miyahara R. Emollients. In: Sakamoto K, Lochhead RY, Maibach HI, Yamashita Y, editors. Cosmetic science and technology: theoretical principles and applications. Amsterdam: Elsevier; 2017. p. 245-53.
  35. Yang X, Li Z, Liu H, Ma L, Huang X, Cai Z, et al. Cellulosebased polymeric emulsifier stabilized poly(N-vinylcaprolactam) hydrogel with temperature and pH responsiveness. Int J Biol Macromol. 2020;143:190-9. https://doi.org/10.1016/j.ijbiomac.2019.12.019
  36. Pereira GA, Silva EK, Peixoto Araujo NM, Arruda HS, Meireles MAA, Pastore GM. Mutamba seed mucilage as a novel emulsifier: stabilization mechanisms, kinetic stability and volatile compounds retention. Food Hydrocoll. 2019;97:105190.
  37. Egues I, Eceiza A, Labidi J. Effect of different hemicelluloses characteristics on film forming properties. Ind Crops Prod. 2013;47:331-8. https://doi.org/10.1016/j.indcrop.2013.03.031
  38. Paximada P, Tsouko E, Kopsahelis N, Koutinas AA, Mandala I. Bacterial cellulose as stabilizer of o/w emulsions. Food Hydrocoll. 2016;53:225-32. https://doi.org/10.1016/j.foodhyd.2014.12.003
  39. Sung YK, Kim SW. Recent advances in polymeric drug delivery systems. Biomater Res. 2020;24:12.
  40. Auriemma G, Cerciello A, Aquino RP, Gaudio PD, Fusco BM, Russo P. Pectin and zinc alginate: the right inner/outer polymer combination for core-shell drug delivery systems. Pharmaceutics. 2020;12(2):87.
  41. Chen H, Niu H, Zhang H, Yun Y, Chen W, Zhong Q, et al. Preparation and properties of ferulic acid-sugar beet pulp pectin ester and its application as a physical and antioxidative stabilizer in a fish oil-water emulsion. Int J Biol Macromol. 2019;139:290-7. https://doi.org/10.1016/j.ijbiomac.2019.07.222
  42. Mangilal T, Patnaik KSKR, Sudhakar Y, Vijayakumari T, Kavitha T. Isolation, purification, evaluation and toxicity studies of natural edible mucoadhesive polymers from various parts of plants and compared with synthetic mucoadhesive polymers. Int J Life Sci Rev. 2015;1(2):71-82.
  43. Himashree P, Sengar AS, Sunil CK. Food thickening agents: sources, chemistry, properties and applications - a review. Int J Gastron Food Sci. 2022;27:100468.