• Title/Summary/Keyword: non-spherical particle

Search Result 61, Processing Time 0.027 seconds

Preparation and Application of Wnitening Ingredient Entrapped in Solid Lipid Nanoparticle [SLN] (미백성분이 포함된 나노입자의 제조와 응용)

  • 한성철;김연주;이기영;김동운
    • KSBB Journal
    • /
    • v.19 no.3
    • /
    • pp.178-186
    • /
    • 2004
  • The aim of this study was to investigate the skin-whitening effect of okyong-san and to develop new drug delivery carrier The extracts of okyong-san were found to have the whitening effect and Eudragit$\^$ⓡ/ L 100-55 (EUD) coated solid lipid nanoparticle (E-SLN) was prepared by solvent evaporation method and melt dispersion technique. As a result, E-SLN have a 144-170 nm of particle size, spherical shape, and 33-41% encapsulation efficiency, After release test in vitro, release profile of E-SLN depended on pH and temperature. Lastly, closed patch test and skin-whitening test was peformed clinically. In conclusion, test sample had non-stimulation and high % whiteness. The results suggest that okyong-san and E-SLN is useful as cosmeceuticals for whitening cosmetics.

Effects of Suppository Bases and Additives on Rectal Absorption of Ibuprofen Lysinate (이부프로펜 리지네이트의 직장흡수에 미치는 좌제기제 및 첨가제의 영향)

  • Jeon, Hong-Ryeol;Park, Dong-Woo;Lee, Seung-Mok;Yi, Jung-Woo;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.24 no.3
    • /
    • pp.145-153
    • /
    • 1994
  • Ibuprofen is an effective non-steroidal anti-inflammatory drug (NSAID), but it has several limitations in clinical application because of low solubility in water and gastrointestinal irritation. A water-soluble salt of ibuprofen, ibuprofen Iysinate, has been synthesized to overcome these shortcomings, and it was formulated as suppository for rectal administration. Witepsol and polyethylene glycols were employed as suppository bases for either ibuprofen or ibuprofen Iysinate, in order to compare the bioavailability in rabbits. The plasma concentrations of ibuprofen were assayed by HPLC after a rectal administration of ibuprofen and ibuprofen Iysinate, respectively. In addition to the comparison of two suppository bases, the other factors which affect on rectal absorption were also evaluated, especially in the point of not only particle size and shape of ibuprofen Iysinate but also effects of additives such as stearic acid, cetyl alcohol and capric acid. And pharmacokinetic parameters such as AUC, $C_{max}$, and $T_{max}$ were also compared. In conclusion, spray-dried ibuprofen Iysinate which was polyporous and spherical shape gave an increased absorption from the rectal formulations with Witepsol Hl5 and stearic acid.

  • PDF

Preparation and Sintering Characteristics of Gd-Doped CeO2 Powder by Oxalate Co-Precipitation (옥살산 공침법에 의한 Gd-Doped CeO2 분말의 합성 및 소결 특성)

  • Han, In-Dong;Lim, Kwang-Young;Sim, Soo-Man
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.10 s.293
    • /
    • pp.666-672
    • /
    • 2006
  • GDC20($Ce_{0.8}Gd_{0.2}O_{1.9}$) powder was synthesized by oxalate co-precipitation and milling and its thermal decomposition, phase formation, and sinterability were investigated. As-prepared precipitates were non-crystalline due to the milling process and completely decomposed at 400$^{\circ}C$ The powder calcined at 800$^{\circ}C$ for 2 h contained fine p]sty particles with an average size of 0.69 $\mu$m. Attrition milling of the calcined powder for 2 h had a little milling effect, resulting in a slight decrease in the particle size to 0.45 $\mu$m. The milled powder consisted of small spherical primary particles and some large particles, which had been agglomerated during calcination. Due to the excellent sinterability of the powder, sintering of the powder compacts for 4 h showed relative densities of 78.7% at 1000$^{\circ}C$ and 97.8% at 1300$^{\circ}C$, respectively. Densification was found to almost complete at temperature above 1200$^{\circ}C$ and a dense and homogeneous microstructure was obtained. A rapid grain growth occurred between 1200$^{\circ}C$ and 1300$^{\circ}C$. Grains in 0.1$\sim$0.5 $\mu$m sizes at 1200$^{\circ}C$ grew to 0.2$\sim$2 $\mu$m and their size distribution became broader at 1300$^{\circ}C$.

Synthesis of Tetramethylorthosilicate (TMOS) and Silica Nanopowder from the Waste Silicon Sludge (폐(廢)실리콘슬러지로부터 TMOS 및 실리카 나노분말(粉末) 제조(製造))

  • Jang, Hee-Dong;Chang, Han-Kwon;Cho, Kuk;Kil, Dae-Sup
    • Resources Recycling
    • /
    • v.16 no.5
    • /
    • pp.41-45
    • /
    • 2007
  • Tetramethylorthosilicate (TMOS) and silica nanopowder were synthesized from the waste silicon sludge containing 15% weight of silicon powder. TMOS, a precursor of silica nanopowder, was firstly prepared from the waste silicon sludge by catalytic chemical reaction. The maximum recovery of the TMOS was 100% after 5 hrs regardless of reaction temperature above $130^{\circ}C$. But the initial reaction rate became faster while the reaction temperature was higher than $150^{\circ}C$. As the methanol feedrate Increased from 0.8 ml/min to 1.4 ml/min, the yield of reaction was not varied after 3 hrs. Then, silica nanopowder was synthesized from the synthesized TMOS by flame spray pyrolysis. The morphology of as-prepared silica nanopowder was spherical and non-aggregated. The average particle diameters ranged from 9 nm to 30 nm and were in proportional to the precursor feed rate, and precursor concentration.

Optimization of Silver Nanoparticles Synthesis through Design-of-Experiment Method (실험계획법을 활용한 은 나노 입자의 합성 및 최적화)

  • Lim, Jae Hong;Kang, Kyung Yeon;Im, Badro;Lee, Jae Sung
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.756-763
    • /
    • 2008
  • The aim of this work was to obtain uniform and well-dispersed spherical silver nanoparticles using statistical design-of-experiment methods. We performed the experiments using 2 k fractional factorial designs with respect to key factors of a general chemical reduction method. The nanoparticles prepared were characterized by SEM, TEM and UV-visible absorbance for particle size, distribution, aggregation and anisotropy. The data obtained were analyzed and optimized using a statistical software, Minitab. The design-of-experiment methods using quantified data enabled us to determine key factors and appreciate interactions between factors. The measured properties of nanoparticles were dominated not only by individual one or two main factors but also by interactions between factors. The appropriate combination of the factors produced small, narrow-distributed and non-aggregated silver nanoparticles of about 30 nm with approximately 10% standard deviation.

Synthesis of Si-CNT-C Composites and Their Application to Lithium Ion Battery (실리콘-탄소나노튜브-탄소 복합체 제조 및 리튬이온전지 응용)

  • Kim, Chan Mi;Kim, Sun Kyung;Chang, Hankwon;Kil, Dae sup;Jang, Hee Dong
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.42-48
    • /
    • 2018
  • Silicon has attracted extensive attention due to its high theoretical capacity, low discharge potential and non-toxicity as anode material for lithium ion batteries. In this study, Si-CNT-C composites were fabricated for use as a high-efficiency anode material in a lithium ion battery. Aerosol self-assembly and post-heat treatment processes were employed to fabricate the composites. The morphology of the Si-CNT-C composites was spherical and an average particle size was $2.72{\mu}m$. The size of the composite increased as concentration of Si and CNT increased in the precursor solution. In the Si-CNT-C composites, CNT and C carbonized from glucose were attached to the surface of Si particles. Electrochemical measurement showed that the cycle performance of Si-CNT-C composites was better than that of silicon particles.

3-D Perspectives of Atmospheric Aerosol Optical Properties over Northeast Asia Using LIDAR on-board the CALIPSO satellite (CALIPSO위성 탑재 라이다를 이용한 동북아시아 지역의 대기 에어러솔 3차원 광학특성 분포)

  • Lee, Kwon-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.5
    • /
    • pp.559-570
    • /
    • 2014
  • Backscatter signal observed from the space-borne Light Detection And Ranging (LIDAR) system is providing unique 3-dimensional spatial distribution as well as temporal variations for atmospheric aerosols. In this study, the continuous observations for aerosol profiles were analyzed during a years of 2012 by using a Cloud-Aerosol LIDAR with Orthogonal Polarization (CALIOP), carried on the Cloud-Aerosol LIDAR and Infrared Pathfinder Satellite Observation (CALIPSO) satellite. The statistical analysis on the particulate extinction coefficient and depolarization ratio for each altitude was conducted according to time and space in order to estimate the variation of optical properties of aerosols over Northeast Asia ($E110^{\circ}-140^{\circ}$, $N20^{\circ}$ $-50^{\circ}$). The most frequent altitudes of aerosols are clearly identified and seasonal mean aerosol profiles vary with season. Since relatively high particle depolarization ratios (>0.5) are found during all seasons, it is considered that the non-spherical aerosols mixed with pollution are mainly exists over study area. This study forms initial regional 3-dimensional aerosol information, which will be extended and improved over time for estimation of aerosol climatology and event cases.

Development of the Engineered Filter Media for Reducing Pollutants in Urban Runoff (도시지역 불투수면의 오염물질 유출저감을 위한 여재 개발 및 처리 특성 평가)

  • Kang, Sung Won;Lee, Jai Young;Kim, Seog Ku
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.4
    • /
    • pp.391-396
    • /
    • 2011
  • Recently it revealed that urban runoff was one of the major source that contaminates the river, lake and estuary because it contains toxic compounds such as heavy metals and Poly Aromatic Hydrocarbons (PAHs) as well as suspended solids, organic compounds and nutrients. The engineered polymetric media in this research were developed for reducing pollutants in urban runoff and would be used to be charged in the storm water treatment equipment. The engineered media that were composed of the polypropylene was foamed to have the buoyancy and then shattered by mechanical for the efficient filtration. In this study, Spherical Expanded Polypropylene Media (SEPM), Crushed Polypropylene Media (CPM), Large Crushed Expanded Polypropylene Media (LCEPM), Small Crushed Expanded Polypropylene Media (SCEPM) were made from polypropylene. Surface characteristics of the developed media were determined by scanning electron microscopy analyses. Also, removal efficiencies of SS, $COD_{Cr}$ in the artificial road runoff and the bed headloss by media and particle pollutants captured by media were examined. Results on the surface characteristics of media indicated that SCEPM had the largest specific surface area, $0.80m^2/g$, the lowest specific gravity, 0.091, and the biggest porosity, 0.63, because of crushing the media at the process of manufacturing. And the SCEPM's removal efficiencies of TSS and $COD_{Cr}$ in the artificial road runoff were 92.9% and 83.6%, respectively and the headloss of SCEPM was the least of them.

A Study on Photoluminance Properties of $(Y,Gd)BO_3:Eu^{3+}$ Phosphor Synthesized by Ultrasonic Spray Pyrolysis (초음파 분무법으로 제조한 $(Y,Gd)BO_3:Eu^{3+}$ 형광체의 발광특성에 관한 연구)

  • Kim, Dae-Su;Lee, Rhim-Youl
    • Korean Journal of Materials Research
    • /
    • v.10 no.3
    • /
    • pp.204-211
    • /
    • 2000
  • The $(Y,Gd)BO_3:Eu$ red phosphors for PDP application were synthesized by ultrasonic spray method and then their photoluminance properties were investigated under 147nm VUV irradiation. The precursor solution of acetates of Y, GD and Eu and boric acid diluted in water was sprayed using 1.7 MHz ultra-sonic sprayer into the reaction tube held at high temperature. The as-sprayed particles were amorphous phase having C-C and C-H bonds due to the insufficient thermal reaction during the pass along the tube. But the sprayed samples followed by heat treatment at $1100^{\circ}C$ had the same crystal structure and chemical composition as those samples followed by solid state reaction. It was found that the $(Y_{0.7}Gd_{0.3})_{0.95} BO_3:Eu_{0.05}^{3+}$ phosphor particles synthesized by spray at $500^{\circ}C$ and then heat treated at $900^{\circ}C$ had a spherical-like shape and fine particle size at $0.7{\mu\textrm{m}}$ having a narrow size distribution, while the phosphor particles made by solid state reaction was $3{\mu\textrm{m}}$ coarse and non-uniform size distribution. The emitting intensity under 147nm VUV excitation for $(Y_{0.7}Gd_{0.3})_{0.95}BO_3:Eu_{0.05}^{3+}$ phosphor prepared by spray method was found to be higher than those phosphor made by solid state reaction and the commercial $(Y,Gd)BO_3:Eu$ product.

  • PDF

A Study on Synthesis and Dispersion of Silver Nano Particle Using Trisodium Citrate (Trisodium Citrate을 이용한 은 나노입자의 합성 및 분산성에 관한 연구)

  • Lee, Jong Jib
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.772-779
    • /
    • 2016
  • Silver nanoparticles were prepared by reacting silver nitrate and trisodium citrate in an aqueous solution. Their size and shape were investigated by scanning electron microscopy (SEM). The synthesis was carried with different silver nitrate concentration, addition of TSC, solvent, surfactant, ultrasonication, and dispersing agent. With higher concentration of silver nitrate or TSC, the particles became large or agglomerated. The SEM results showed that the nanoparticles have spherical and pseudospherical shape with a narrow size distribution. The hydrophobic solvent did not affect the dispersibility, but the hydrophilic solvent enhanced it. The addition of HPMC surfactant caused the size to increase (50-100 nm) with non-uniform shapes and partial agglomeration. The dispersibility was significantly improved by ultrasonication for over 3 hours after the addition of a dispersing agent. Complete dispersion was achieved by adding the dispersant, and the nanoparticle sizes were as follows: 30-40 nm (BYK-182) < 42-78 nm (BYK-192) < 51-113 nm (BYK-142). The nanoparticles were 38.45-46.28 nm after the addition of 2-4 wt% TSC in 0.002 M silver nitrate solution.