• Title/Summary/Keyword: non-planar

Search Result 263, Processing Time 0.026 seconds

Development of Finite Element Program for Analyzing Springback Phenomena of Non-isothermal Forming Processes for Aluminum Alloy Sheets (Part II : Theory & Analysis) (알루미늄 합금박판 비등온 성형공정 스프링백 해석용 유한요소 프로그램 개발 (2부 : 이론 및 해석))

  • Keum Y. T.;Han B. Y.;Wagoner R.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.08a
    • /
    • pp.13-20
    • /
    • 2003
  • The implicit, finite element analysis program for analyzing the springback in the warm forming process of aluminum alloy sheets was developed. For the description of planar anisotropy in warm forming temperatures, Barlat's yield function is employed, and the power law type constitutive equation is used in terms of working temperatures fur the depiction of work hardening in high temperatures. Also, Jetture's 4-node shell elements are introduced for reflecting the mechanical behavior of aluminum alloy sheet and the non-steady heat balance equations are solved for considering heat gain and loss during the forming process. For the springback evaluation, Newton-Raphson iteration method is introduced for overcoming the geometric nonlinearlity problem. In order to verify the validity of the FEM program developed, the stretching bending and springback processes are simulated. Though springback analysis results are slightly bigger than experimental ones, they have the same trend of the decreasing springback as the forming temperature increases.

  • PDF

Non-linear fire-resistance analysis of reinforced concrete beams

  • Bratina, Sebastjan;Planinc, Igor;Saje, Miran;Turk, Goran
    • Structural Engineering and Mechanics
    • /
    • v.16 no.6
    • /
    • pp.695-712
    • /
    • 2003
  • The non-linear structural analysis of reinforced concrete beams in fire consists of three separate steps: (i) The estimation of the rise of surrounding air temperature due to fire; (ii) the determination of the distribution of the temperature within the beam during fire; (iii) the evaluation of the mechanical response due to simultaneous time-dependent thermal and mechanical loads. Steps (ii) and (iii) are dealt with in the present paper. We present a two-step computational procedure where a 2D transient thermal analysis over the cross-sections of beams are made first, followed by mechanical analysis of the structure. Fundamental to the accuracy of the mechanical analysis is a new planar beam finite element. The effects of plasticity in concrete, and plasticity and viscous creep in steel are taken into consideration. The properties of concrete and steel along with the values of their thermal and mechanical parameters are taken according to the European standard ENV 1992-1-2 (1995). The comparison of our numerical and full-scale experimental results shows that the proposed mechanical and 2D thermal computational procedure is capable to describe the actual response of reinforced concrete beam structures to fire.

High-Contrast Imaging of Biomolecular Interactions Using Liquid Crystals Supported on Roller Printed Protein Surfaces

  • Park, Min-Kyung;Jang, Chang-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3269-3273
    • /
    • 2012
  • In this study, we report a new method for the high contrast imaging of biomolecular interactions at roller printed protein surfaces using thermotropic liquid crystals (LCs). Avidin was roller printed and covalently immobilized onto the obliquely deposited gold surface that was decorated with carboxylic acid-terminated self-assembled monolayers (SAMs). The optical response of LCs on the roller printed film of avidin contrasted sharply with that on the obliquely deposited gold surface. The binding of biotin-peroxidase to the roller printed avidin was then investigated on the obliquely deposited gold substrate. LCs exhibited a non-uniform and random orientation on the roller printed area decorated with the complex of avidin and biotin-peroxidase, while LCs displayed a uniform and planar orientation on the area without roller printed proteins. The orientational transition of LCs from uniform to non-uniform state was triggered by the erasion of nanometer-scale topographies on the roller printed surface after the binding of biotin-peroxidase to the surface-immobilized avidin. The specific binding events of protein-receptor interactions were also confirmed by atomic force microscopy and ellipsometry. These results demonstrate that the roller printing of proteins on obliquely deposited gold substrates could provide a high contrast signal for imaging biomolecular interactions using LC-based sensors.

Temperature Field Measurement of Non-Isothermal Jet Flow Using LIF Technique (레이저형광여기(LIF)를 이용한 비등온 제트유동의 온도장 측정)

  • Yoon, Jong-Hwan;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.10
    • /
    • pp.1399-1408
    • /
    • 2000
  • A 2-dimensional temperature field measurement technique using PLIF (Planar Laser Induced Fluorescence) was developed and it was applied to an axisymmetric buoyant jet. Rhodamine B was used as a fluorescent dye. Laser light sheet illuminated a two-dimensional cross section of the jet. The intensity variations of LIF signal from Rhodamine B molecules scattered by the laser light were captured with an optical filter and a CCD camera. The spatial variations of temperature field of buoyant jet were derived using the calibration data between the LIF signal and real temperature. The measured results show that the turbulent jet is more efficient in mixing compared to the transition and laminar jet flows. As the initial flow condition varies from laminar to turbulent flow, the entrainment from ambient fluid increases and temperature decay along the jet center axis becomes larger. In addition to the mean temperature field, the spatial distributions of temperature fluctuations were measured by the PLIF technique and the result shows the shear layer development from the jet nozzle exit.

Conservation treatment of the Bonhwa Bukjiri Maaeyeoraejwasang(Rock-Carved Seated Buddha Statue), Korea (봉화 북지리 마애여래좌상의 과학적 보존처리)

  • Kim, Sa-dug;Choi, Joon-Hyun
    • 보존과학연구
    • /
    • s.34
    • /
    • pp.6-17
    • /
    • 2013
  • Bukjiri Seated Rock-carved Buddha of Bonghwa is a rock carved Buddhist Statues on the Two-Mica Granite with mid-size grains. The non-destructive diagnosis on the statues showed that their surfaces had been damaged by exfoliation or granular decomposition and their physical properties are also found to be weak. In addition, the evaluation of slope stability showed that there are the possibility of toppling failure, or planar and wedge failure. So, we have recovered the physical strength and structural stability of rock using the scientific conservation treatment. We also founded that the existing shelter was damaged by the poor ventilation and water leakage. So we constructed it in a way that there is no water leakage while the ventilation is good.

  • PDF

Study on the Silicon Nano-needle Structure for Nano floating Gate Memory Application (나노 부유 게이트 메모리 소자 응용을 위한 실리콘 나노-바늘 구조에 관한 연구)

  • Jung, Sung-Wook;Yoo, Jin-Su;Kim, Young-Kuk;Kim, Kyung-Hae;Yi, Jun-Sin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.12
    • /
    • pp.1069-1074
    • /
    • 2005
  • In this work, nano-needle structures ate formed to solve problem, related to low density of quantum dots for nano floating gate memory. Such structures ate fabricated and electrical properties' of MIS devices fabricated on the nano-structures are studied. Nano floating gate memory based on quantum dot technologies Is a promising candidate for future non-volatile memory devices. Nano-structure is fabricated by reactive ion etching using $SF_6$ and $O_2$ gases in parallel RF plasma reactor. Surface morphology was investigated after etching using scanning electron microscopy Uniform and packed deep nano-needle structure is established under optimized condition. Photoluminescence and capacitance-voltage characteristics were measured in $Al/SiO_2/Si$ with nano-needle structure of silicon. we have demonstrated that the nano-needle structure can be applicable to non-volatile memory device with increased charge storage capacity over planar structures.

Influence of Removed Web Members in Shaping Formation for Hypar Space Truss

  • Kim Jin-Woo;Kwon Min-Ho;Lee Yong-Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.2 s.69
    • /
    • pp.16-21
    • /
    • 2006
  • This paper discusses the behavior of post-tensioned and shaped hypar space truss, with consideration of the influence of removing some web members. Hypar space truss is post-tensioned at the bottom chords of one diagonal on the ground; the essential behavior characteristic of shape formation is discussed by using a small-scale test model. Results of experiments and nonlinear finite-element analysis indicate that a planar, rectangular- arranged structure can be deformed to a predicted hyper shape, by the proposed shape formation method. Also the feasibility of the proposed method for furnishing of a hypar shaped face truss has been presented, under the condition of both non-removed and partially removed web members. It follows that a nonlinear finite element analysis method can be used in predicting the behavior of the space shape and the post-tensioning force in sharing of hypar space truss. Further, in comparison to the other cases, the results of test and analysis show that the active diagonal shaping in the non-removed web members and passive diagonal shaping of partially removed web members are in relatively good agreement.

Air-coupled ultrasonic tomography of solids: 1 Fundamental development

  • Hall, Kerry S.;Popovics, John S.
    • Smart Structures and Systems
    • /
    • v.17 no.1
    • /
    • pp.17-29
    • /
    • 2016
  • Ultrasonic tomography is a powerful tool for identifying defects within an object or structure. But practical application of ultrasonic tomography to solids is often limited by time consuming transducer coupling. Air-coupled ultrasonic measurements may eliminate the coupling problem and allow for more rapid data collection and tomographic image construction. This research aims to integrate recent developments in air-coupled ultrasonic measurements with current tomography reconstruction routines to improve testing capability. The goal is to identify low velocity inclusions (air-filled voids and notches) within solids using constructed velocity images. Finite element analysis is used to simulate the experiment in order to determine efficient data collection schemes. Comparable air-coupled ultrasonic signals are then collected through homogeneous and isotropic solid (PVC polymer) samples. Volumetric (void) and planar (notch) inclusions within the samples are identified in the constructed velocity tomograms for a variety of transducer configurations. Although there is some distortion of the inclusions, the experimentally obtained tomograms accurately indicate their size and location. Reconstruction error values, defined as misidentification of the inclusion size and position, were in the range of 1.5-1.7%. Part 2 of this paper set will describe the application of this imaging technique to concrete that contains inclusions.

Response Modification Factors for Seismic Performance Evaluation of Non-seismic School Buildings with Partial Masonry Infills (조적허리벽이 있는 비내진 학교시설의 내진성능평가를 위한 반응수정계수)

  • Kim, Beom Seok;Park, Ji-Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.71-82
    • /
    • 2019
  • Most school buildings consist of reinforced concrete (RC) moment frames with masonry infills. The longitudinal direction frames of those school buildings are relatively weak due to the short-column effects caused by the partial masonry infills and need to be evaluated carefully. In 'Manual for Seismic Performance Evaluation and Retrofit of School Facilities' published in 2018, response modification factor of 2.5 is applied to non-seismic RC moment frames with partial masonry infills, but sufficient verification of the factor has not been reported yet. Therefore, this study conducted seismic performance evaluation of planar RC moment frames with partial masonry infills in accordance with both linear analysis and nonlinear static analysis procedures presented in the manual. The evaluation results from the different procedures are compared in terms of assessed performance levels and number of members not meeting target performance objectives. Finally, appropriate response modification factors are proposed with respect to a shear-controlled column ratio.

The Usefulness of Ga-67 SPECT Imaging to Detect the Non-Hodgkin's Lymphoma: Comparison with Ga-67 Planar and SPECT Imaging (비호지킨 림프종의 진단에서 갈륨 SPECT의 유용성: 평면영상과 SPECT영상의 비교)

  • Wang, Jing;Bae, Sang-Kyun;Yum, Ha-Yong
    • The Korean Journal of Nuclear Medicine
    • /
    • v.30 no.1
    • /
    • pp.139-144
    • /
    • 1996
  • 갈륨스캔은 여러 종류의 염증성 질환 및 종양을 발견하기 위해 사용되고 있다. 특히 림프종은 갈륨스캔에서 양성율이 비교적 높은 종양으로 알려져 있다. 하지만 기존의 평면 영상만으로는 작은 크기의 종괴나 다른 장기에 의해 가려져 있는 경우에 위음성 결과를 보일 수 있었다. 최근 단일광자 방출 전산화 단층촬영(SPCET)을 도입하여 평면영상에 비해 더 나은 공간해상력으로 많은 정보를 얻고 있다. 저자들은 비호지킨 림프종 환자 30명을 대상으로 갈륨스캔 평면영상과 SPECT 영상을 얻어 비교하였다. 병변의 부위별로 두경부, 흉부, 복부에서 평면영상의 예민도는 각각 71%, 73%, 81%였으며, SPECT 영상의 예민도는 91%, 93%, 96%였다. CT 등 방사선학적 검사소견과 임상소견을 기준으로 하였을 때 위음성율은 평면영상의 경우 24%, SPECT 6.5%였다. 장의 방사능으로 인한 섭취와 폐문부 및 침샘의 비대칭적 섭취로 인한 위양성례가 4예 있었다. 결론적으로 비호지킨 림프종의 진단 및 병기를 결정하는데 있어서 갈륨스캔이 유용하며, SPCET 영상을 얻음으로써 더 나은 해부학적 위치 및 정확한 범위를 보여 줄 수 있을 것으로 생각된다.

  • PDF