Browse > Article
http://dx.doi.org/10.5012/bkcs.2012.33.10.3269

High-Contrast Imaging of Biomolecular Interactions Using Liquid Crystals Supported on Roller Printed Protein Surfaces  

Park, Min-Kyung (Department of Chemistry, Gachon University)
Jang, Chang-Hyun (Department of Chemistry, Gachon University)
Publication Information
Abstract
In this study, we report a new method for the high contrast imaging of biomolecular interactions at roller printed protein surfaces using thermotropic liquid crystals (LCs). Avidin was roller printed and covalently immobilized onto the obliquely deposited gold surface that was decorated with carboxylic acid-terminated self-assembled monolayers (SAMs). The optical response of LCs on the roller printed film of avidin contrasted sharply with that on the obliquely deposited gold surface. The binding of biotin-peroxidase to the roller printed avidin was then investigated on the obliquely deposited gold substrate. LCs exhibited a non-uniform and random orientation on the roller printed area decorated with the complex of avidin and biotin-peroxidase, while LCs displayed a uniform and planar orientation on the area without roller printed proteins. The orientational transition of LCs from uniform to non-uniform state was triggered by the erasion of nanometer-scale topographies on the roller printed surface after the binding of biotin-peroxidase to the surface-immobilized avidin. The specific binding events of protein-receptor interactions were also confirmed by atomic force microscopy and ellipsometry. These results demonstrate that the roller printing of proteins on obliquely deposited gold substrates could provide a high contrast signal for imaging biomolecular interactions using LC-based sensors.
Keywords
Liquid crystals; Orientational transition; Roller printing of proteins; Protein-receptor interactions; LC-based sensors;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Venien, A.; Levieux, D.; Dufour, E. J. Colloid Interface Sci. 2000, 223, 215.   DOI   ScienceOn
2 Nielsen, U. B.; Cardone, M. H.; Sinskey, A. J.; MacBeath, G.; Sorger, P. K. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 9330.   DOI   ScienceOn
3 Park, S. J.; Jang, C. H. Nanotechnology 2010, 21, 425502.   DOI   ScienceOn
4 Kim, S. R.; Abbott, N. L. Adv. Mater. 2001, 13, 1445.   DOI
5 Luk, Y. Y.; Tingey, M. L.; Hall, D. J.; Israel, B. A.; Murphy, C. J.; Bertics, P. J.; Abbott, N. L. Langmuir 2003, 19, 1671.   DOI   ScienceOn
6 Tingey, M. L.; Wilyana, S.; Snodgrass, E. J.; Abbott, N. L. Langmuir 2004, 20, 6818.   DOI   ScienceOn
7 Han, G. R.; Jang, C. H. Colloids and Surfaces B: Biointerfaces 2012, 94, 89.   DOI   ScienceOn
8 Park, M. K.; Jang, C. H. Bull. Korean Chem. Soc. 2010, 31, 1223.   DOI   ScienceOn
9 Pandey, A.; Mann, M. Nature 2000, 405, 837.   DOI   ScienceOn
10 Gupta, V. K.; Skaife, J. J.; Dubrovsky T. B.; Abbott, N. L. Science 1998, 279, 2077.   DOI   ScienceOn
11 Jang, C. H.; Tingey, M. L.; Korpi, N. L.; Wiepz, G. J.; Schiller, J. H.; Bertics, P. J.; Abbott, N. L. J. Am. Chem. Soc. 2005, 127, 8913.
12 Tan, H.; Yang, S.; Shen, G.; Yu, R.; Wu, Z. Angew. Chem. Int. Ed. 2010, 122, 8790.   DOI   ScienceOn
13 Brake, J. M.; Daschner, M. K.; Luk, Y.-Y.; Abbott, N. L. Science 2003, 302, 2094.   DOI   ScienceOn
14 Hartono, D.; Qin, W. J.; Yang, K.-L.; Yung, L.-Y. L. Biomaterials 2009, 30, 843.   DOI   ScienceOn
15 Fletcher, P. D. I.; Kang, N.-G.; Paunov, V. N. ChemPhysChem. 2009, 10, 3046.   DOI   ScienceOn
16 Hu, Q. Z.; Jang, C. H. Analyst 2012, 137, 567.   DOI   ScienceOn
17 Lin, I.-H.; Miller, D. S.; Bertics, P. J.; Murphy, C. J.; de Pablo J. J.; Abbott, N. L. Science 2011, 332, 1297.   DOI   ScienceOn
18 Hu, Q. Z.; Jang, C. H. ACS Appl. Mater. Interfaces 2012, 4, 1791.   DOI   ScienceOn
19 Hussain, A.; Pina A. S.; Roque, A. C. A. Biosens. Bioelectron. 2009, 25, 1.   DOI   ScienceOn