• Title/Summary/Keyword: non-meat ingredient

Search Result 13, Processing Time 0.021 seconds

Manufacture and Evaluation of Low-Eat Meat Products(A review) (저지방 육제품의 제조 및 평가)

  • 진구복
    • Food Science of Animal Resources
    • /
    • v.22 no.4
    • /
    • pp.363-372
    • /
    • 2002
  • Reducing the fat content of processed meat products can be performed by (1) using leaner raw meat materials (2) inducing non-meat ingredients that serve to replace a portion or all of the fat, and (3) applying new ingredient combinations, technologies or processing procedures that decrease the fat and cholesterol content of meat products. Low-fat meat products were manufactured with Int replacers which were food ingredients that had the functional and sensory properties of fat without contributing fat calories, resulting in lower fat(<3%) content. Added water, non-meat proteins, carbohydrates, such as starch and hydrocolloids(gums) and vegetable oils have been used as typical fat replacers to be used in meat products. In addition, fat substitutes included structural lipids, sucrose polyester and ingredient combinations. Formulations for the manufacture of low-fat meat products in combined with new technologies have focused on the use of fat replacer combinations that contributes a minimum of calories and not detrimental to flavor, juiciness, mouthfeel or textural traits expected more traditional products. In conclusion, some combinations of fat replacements that mimics the flavor, mouthfeel and textural characteristics of fat offer potential for further development of low-fat meat products to have similar characteristics of regular-fat counterparts.

Effects of Glasswort (Salicornia herbacea L.) Hydrates on Quality Characteristics of Reduced-salt, Reduced-fat Frankfurters

  • Lim, Yun-Bin;Kim, Hyun-Wook;Hwang, Ko-Eun;Song, Dong-Heon;Kim, Yong-Jae;Ham, Youn-Kyung;Jang, Sung-Jin;Lee, Choong-Hee;He, Fu-Yi;Choi, Yun-Sang;Kim, Cheon-Jei
    • Food Science of Animal Resources
    • /
    • v.35 no.6
    • /
    • pp.783-792
    • /
    • 2015
  • Abstract This study evaluated the effects of adding glasswort hydrate containing non-meat ingredient (GM, carboxy methyl cellulose; GC, carrageenan; GI, isolated soy protein; GS, sodium caseinate) on the quality characteristics of reduced-salt, reduced-fat frankfurters. The pH and color evaluation showed significant differences, depending on the type of glasswort hydrate added (p<0.05). In the raw batters and cooked frankfurters, the addition of glasswort hydrate decreased the redness and increased the yellowness in comparison with frankfurters without glasswort hydrate. The reduction in salt and fat content significantly increased cooking loss and decreased hardness, tenderness and juiciness (p<0.05). Glasswort hydrate containing non-meat ingredient improved cooking loss, water holding capacity, emulsion stability, hardness, and viscosity of reduced-salt, reduced-fat frankfurters. The GM treatment had the highest myofibiliar protein solubility among all treatments, which was associated with emulsion stability and viscosity. The GC treatment had higher values for all texture parameters than the control. In the sensory evaluation, the addition of glasswort hydrate with non-meat ingredient improved tenderness and juiciness of reduced-salt, reduced-fat frankfurters. GM, GC, and GI treatments improved not only the physicochemical properties but also the sensory characteristics of reduced-salt, reduced-fat frankfurters. The results indicated that the use of glasswort hydrate containing non-meat ingredient was improved the quality characteristics of reduced-salt, reduced-fat frankfurters.

Effects of non-genetically and genetically modified organism (maize-soybean) diet on growth performance, nutrient digestibility, carcass weight, and meat quality of broiler chicken

  • Zhang, Song;Ao, Xiang;Kim, In Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.6
    • /
    • pp.849-855
    • /
    • 2019
  • Objective: This study was conducted to compare growth performance, nutrient digestibility and meat quality of broilers fed a genetically modified organism (GMO) diet or a non-GMO diet. Methods: A total of 840 broilers with an initial body weight of 43.03 g per chick were randomly allocated into 1 of the following 2 dietary treatments lasted for 32 days (15 broilers per pen with 28 replicates per treatment): i) Trt 1, GMO maize-soybean meal based diet; ii) Trt 2, non-GMO maize soybean meal based diet. Both diets were maize-soybean meal diets. The GMO qualitative analysis, proximate analysis and amino acid analysis of the feed ingredient samples were carried out. Diets were formulated based on a nutrient matrix derived from analysis results. Growth performance was measured on day 0, 7, 17, and 32. And all other response criteria were measured on day 32. Results: The analysis results showed that the total Lys, Met, Thr of non-GMO grains were lower than that of GMO grains, the protein content of GMO soybean meal was higher than that of non-GMO soybean meal. Feed intake and feed conversion rate (FCR) were greater (p<0.05) in broilers provided with non-GMO diet than that of the GMO group from d 17 to 32. A decrease in FCR was observed in birds fed the GMO diet through the entire experiment (p<0.05). No significant impacts on blood profile, meat quality and nutrient digestibility were found in response to dietary treatments throughout the experimental period (p>0.05). Conclusion: These results indicated that non-GMO diet showed a negative effect on growth performance but nutrient digestibility, blood profile, carcass weight and meat quality were not affected by non-GMO diets.

Chemical, Physical Sensory Properties of Expanded Extrudates from Pork Meat-Defatted by Soy Flour-Corn Starch Blends, With or Without Ingredients Derived from Onion, Carrot and Oat

  • Jennifer J. Jamora;Rhee, Ki-Soon;Rhee, Khee-Choon
    • Preventive Nutrition and Food Science
    • /
    • v.6 no.3
    • /
    • pp.158-162
    • /
    • 2001
  • Blends of pork meat (20%), defatted soy flour (25%), and corn starch (48.61~53.71%) were prepared with or without additional non-meat ingredients, i.e., onion powder (1%), alone or in combination with carrot powder (1.5%) or extract (1.5%), or defatted oat flour (5%). All blends were formulated for 22.78% moisture, with water added where necessary. They were extruded using a laboratory single-screw extruder at 16$0^{\circ}C$ profess temperature and 170 rpm screw speed. The additional ingredients generally decreased product expansion and increased bulk density and shear force. When the product with no additional ingredient and the product with onion powder were evaluated by trained sensory panelists, \"grain complex\" was the most intense flavor note for both. With 1 % onion powder in feed, a distinct \"onion\" flavor note was detectable in extrudates. All the products may be considered \"healthful\" based on nutrient profiles.t; based on nutrient profiles.

  • PDF

Influences of Red Pepper Seed Powder on the Physicochemical Properties of a Meat Emulsion Model System

  • Lee, Jeong-A;Kim, Gye-Woong;Kim, Hack-Youn;Choe, Juhui
    • Food Science of Animal Resources
    • /
    • v.39 no.2
    • /
    • pp.286-295
    • /
    • 2019
  • Red pepper seed (RPS) is commonly removed during the production of red pepper powder, which is contains large amounts of dietary fibers and is abundant in nutrients, readily available. In this study, we determined the effects of adding RPS powder on the physicochemical properties of emulsified meat products. Meat emulsion samples were prepared with pork hind leg meat (60%) and back fat (20%), iced water (20%), various additives, and RPS powder at different concentrations [0% (control), 1%, 2%, 3%, and 4%]. For the physicochemical properties, moisture and fat content, pH value, color, emulsion stability, cooking yield, appearance viscosity, and textural properties were examined. Addition of RPS induced significantly higher values in moisture content, pH, cooking yield, and a* values of the meat emulsion samples, regardless of the amount added. However, lower values were obtained for emulsion stability, cooking yield, and viscosity in samples with RPS powder at 3% or 4% among all groups. In general, addition of RPS powder at 1% and 2% led to the greatest values in viscosity of the meat emulsion samples. Higher values (p<0.05) in hardness and springiness were observed in samples with RPS powder at 4% and 3%, respectively. For gumminess, chewiness, and cohesiveness, the addition of RPS powder at 1%, 2%, and 3% induced the highest values (p<0.05) in the meat emulsion samples. These results showed that addition of RPS powder at optimum levels (2%) could be utilized to improve quality properties of emulsified meat products as a non-meat ingredient.

Non-meat Ingredient, Nutritional Composition and Labeling of Domestic Processed Meat Products (국내산 육가공제품의 유형별 첨가물과 영양성분함량 및 표시실태 조사)

  • Cho, Soo-Hyun;Seong, Pil-Nam;Park, Beom-Young;Kim, Jin-Hyung;Park, Eun-Hea;Ha, Kyung-Hee;Lee, Jong-Moon;Kim, Dong-Hoon
    • Food Science of Animal Resources
    • /
    • v.27 no.2
    • /
    • pp.179-184
    • /
    • 2007
  • The objective of this study was to investigate the contents of meat and non-meat ingredients, calorie, fatty acid composition, and cholesterol contents of processed meat products of which informations are being provided for consumer and partly required for the current labeling system in Korea. A total of sixty-one domestic processed meat products produced from 6 domestic meat companies were collected at the large supermarkets in Suwon city; 1) 31 ham products(3 loin hams, 6 press hams, 20 mixed press hams and 2 fish hams), 26 sausage products(15 pork sausages, 7 mixed sausages and 4 fish sausages) and 4 ground processed meat products. Soy protein and com starch were widely used as non-meat ingredients for the most of processed meat products. The contents of meat, protein, fat, cholesterol contents, and calories were 75-98, 12-23, 1-16%, 7-50 mg/100g, and 1,620-3,127 cal/g for ham products and 60-96, 5-17, 3-27%, 5-73 mg/100g, and 1,271-3,546 cal/g for sausage products, respectively. The saturated(SFA), monounsaturated(MUFA) and polyunsaturated fatty acids(PUFA) contents of ham products were 31-40, 44-53 and 60-72%, and those of sausage products were 17-38, 34-61, and 13-37%, respectively. The ranges of meat contents and nutritional compositions were considerably broad even in the same type of the meat products. Therefore, the labeling system of the nutritional facts for ham as well as sausage products is necessary to categorize the quality level and thus to give the nutritional information to consumer for better choice of products in market.

Evaluation of Acid-treated Fish Sarcoplasmic Proteins on Physicochemical and Rheological Characteristics of Pork Myofibrillar Protein Gel Mediated by Microbial Transglutaminase

  • Hemung, Bung-Orn;Chin, Koo Bok
    • Food Science of Animal Resources
    • /
    • v.35 no.1
    • /
    • pp.50-57
    • /
    • 2015
  • Fish sarcoplasmic protein (SP) is currently dumped as waste from surimi industry and its recovery by practical method for being the non-meat ingredient in meat industry would be a strategy to utilize effectively the fish resource. This study was aimed to apply pH treatment for fish SP recovery and evaluated its effect on pork myofibrillar protein (MP) gel. The pH values of fish SP were changed to 3 and 12, and neutralized to pH 7 before lyophilizing the precipitated protein after centrifugation. Acid-treated fish SP (AFSP) showed about 4-fold higher recovery yield than that of alkaline-treated SP and water absorption capacity was also about 1.2-fold greater. Because of the high recovery yield and water absorption capacity, AFSP was selected to incorporate into MP with/without microbial transglutaminase (MTG). The effects of AFSP and MTG on the physicochemical and rheological characteristics of MP and MP gel were evaluated. MTG induced an increase shear stress of the MP mixture and increase the breaking force of MP gels. MP gel lightness was decreased by adding AFSP. MP gel with MTG showed higher cooking loss than that without MTG. A reduction of cooking loss was observed when the AFSP was added along with MTG, where the insoluble particles were found. Therefore, AFSP could be contributed as a water holding agent in meat protein gel.

Use of Awamori-pressed Lees and Tofu Lees as Feed Ingredients for Growing Male Goats

  • Nagamine, Itsuki;Sunagawa, Katsunori;Kina, Takashi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.9
    • /
    • pp.1262-1275
    • /
    • 2013
  • Awamori is produced by fermenting steamed indica rice. Awamori-pressed lees is a by-product of the Awamori production process. Tofu lees is a by-product of the Tofu production process. Research was conducted to test if dried Awamori-pressed lees and Tofu lees can be used as a mixed feed ingredient for raising male goats. Eighteen male kids were divided into three groups of six animals (control feed group (CFG), Awamori-pressed lees mixed feed group (AMFG), Tofu lees mixed feed group (TMFG)). The CFG used feed containing 20% soybean meal as the main protein source, while the AMFG and TMFG used feed mixed with 20% dried Awamori-pressed lees or dried Tofu lees. The groups were fed mixed feed (volume to provide 100 g/d increase in body weight) and alfalfa hay cubes (2.0 kg/d) twice a day (10:00, 16:00). Klein grass hay and water was given ad libitum. Hay intake was measured at 10:00 and 16:00. Body weight and size measurements were taken once a month. At the end of the experiment, a blood sample was drawn from the jugular vein of each animal and the carcass characteristics, the physical and chemical characteristics of loin were analyzed. DCP and TDN intakes in AMFG and TMFG showed no significant difference to the CFG. Cumulative measurements of growth in body weight and size over the 10 mo period in the AMFG and TMFG were similar to the CFG. Blood parameter values were similar to those in normal goats. Dressing carcass weight and percentages, and total weight of meat in the AMFG were similar to that in the CFG, but smaller in the TMFG. The compressed meat juice ratio was higher in both the TMFG and AMFG than the CFG. While the fat in corn, Awamori-pressed lees, and Tofu lees contains more than 50% linoleic acid, the loin fat in both the AMFG and TMFG was very low in linoleic acid due to the increase in the content of oleic acid, stearic acid, and palmitic acid. This indicates that feeding on AMF and TMF does not inhibit hydrogenation by ruminal microorganisms. As in the CFG, the total essential and non-essential amino acids in the loin of the AMFG and TMFG were well balanced. Compared to the CFG, the AMFG and TMFG were high in taurine and carnosine. The results indicate dried Awamori-pressed lees and Tofu lees can be used as a feed ingredient for raising male goats.

Effects of Rice Flour Milling Types and Addition Methods on Rheological and Sensory Properties of Surimi Products (쌀가루의 제분형태 및 첨가방법이 연제품의 물리적 및 관능적 특성에 미치는 영향)

  • Cho, Suengmok;Yoon, Minseok;Kim, Seon-Bong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.2
    • /
    • pp.139-146
    • /
    • 2013
  • Surimi products are among the most prominent seafoods in Korea. Together with fish meat, wheat flour is a major ingredient in the preparation of surimi products. Rice flour, however, can be an effective ingredient in enhancing the rheological characteristics of surimi products. In this study, we evaluated the potential of rice flour as an agent to replace wheat flour in surimi products. The effects of rice flour milling types and addition methods on the rheological and sensory properties of surimi products were investigated. Among different addition methods, the surimi product containing non-treated rice flour showed better gel strength and sensory properties than products containing paste (1:1.3 rice flour/water, w/v) and steamed paste (steamed at $100^{\circ}C$ for 30 min). According to the gel strength results for surimi products with added roll-mill (40 mesh) and jet-mill (180 mesh) rice flours, the roll-mill rice flour shows good potential as a replacement for wheat flour. When considering gel strength and sensory properties, an effective amount of rice flour to add was 10-15% (w/w). In conclusion, the rheological and sensory properties of surimi products containing rice flour were comparable with those of a premium commercial surimi product. Therefore, rice flour might be an effective alternative to wheat flour for premium surimi products.

Quality Characteristics of Functional Fermented Sausages Added with Encapsulated Probiotic Bifidobacterium longum KACC 91563

  • Song, Min-Yu;Van-Ba, Hoa;Park, Won-Seo;Yoo, Ja-Yeon;Kang, Han-Byul;Kim, Jin-Hyoung;Kang, Sun-Moon;Kim, Bu-Min;Oh, Mi-Hwa;Ham, Jun-Sang
    • Food Science of Animal Resources
    • /
    • v.38 no.5
    • /
    • pp.981-994
    • /
    • 2018
  • The present study aimed at evaluating the utilization possibility of encapsulated probiotic Bifidobacterium longum for production of functional fermented sausages. The B. longum isolated from the feces samples of healthy Korean infants encapsulated with glycerol as a cryprotectant was used for fermented sausages production as a functional bacterial ingredient, and its effect was also compared with those inoculated with commercial starter culture (CSC). Results showed that most inoculated encapsulated B. longum (initial count, 5.88 Log CFU/g) could survive after 4 days fermentation (5.40 Log CFU/g), and approximately a half (2.83 Log CFU/g) of them survived in the products after 22 days of ripening. The products inoculated with encapsulated B. longum presented the lowest lipid oxidation level, while had higher total unsaturated fatty acid content and more desirable n-6/n-3 fatty acids than those inoculated with CSC or non-inoculated control. Moreover, the odor and taste scores in the samples made with B. longum were comparable to those in the treatment with CSC. The inoculation with the B. longum had no effects on the biogenic amine contents as well as did not cause defects in color or texture of the final products. Thus, the encapsulation could preserve the probiotic B. longum in the meat mixture, and the encapsulated B. longum could be used as a functional ingredient for production of healthier fermented meat products.