• Title/Summary/Keyword: non-linear problem

Search Result 678, Processing Time 0.031 seconds

Robust Controller Design of Non-Square Linear Systems and Its Applications (비정방 선형 시스템의 강인 제어기 설계 및 그 응용)

  • Son Young-Ik;Shim Hyungbo;Jo Nam-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.4
    • /
    • pp.189-197
    • /
    • 2003
  • The problem of designing a parallel feedforward compensator (PFC) is considered for a class of non-square linear systems such that the closed-loop system is strictly passive. If a given square system has (vector) relative degree one and is weakly minimum phase, the system can be rendered passive by a state feedback. However, when the system states are not always measurable and the given output is considered, passivation (i.e. rendering passive) of a non-minimum phase system or a system with high relative degree cannot be achieved by any other methodologies except by using a PFC. To passivate a non-square system we first determine a squaring gain matrix and design a PFC such that the composite system has relative degree one and is minimum phase. Then the system is rendered strictly passvie by a static output feedback law. Necessary and sufficient conditions for the existence of the PFC and the squaring gain matrix are given by the static output feedback formulation, which enables to utilize linear matrix inequality (LMI). As an application of the scheme, an alternative way of replacing the role of velocity measurements is provided for the PD-control law of a convey-crane system.

Derivation of Exact Dynamic Stiffness Matrix for Non-Symmetric Thin-walled Straight Beams (비대칭 박벽보에 대한 엄밀한 동적 강도행렬의 유도)

  • 김문영;윤희택
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.369-376
    • /
    • 2000
  • For the general loading condition and boundary condition, it is very difficult to obtain closed-form solutions for buckling loads and natural frequencies of thin-walled structures because its behaviour is very complex due to the coupling effect of bending and torsional behaviour. Consequently most of previous finite element formulations introduced approximate displacement fields using shape functions as Hermitian polynomials, isoparametric interpoation function, and so on. The purpose of this study is to calculate the exact displacement field of a thin-walled straight beam element with the non-symmetric cross section and present a consistent derivation of the exact dynamic stiffness matrix. An exact dynamic element stiffness matrix is established from Vlasov's coupled differential equations for a uniform beam element of non-symmetric thin-walled cross section. This numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. The natural frequencies are evaluated for the non-symmetric thin-walled straight beam structure, and the results are compared with available solutions in order to verify validity and accuracy of the proposed procedures.

  • PDF

Takagi-Sugeno Model-Based Non-Fragile Guaranteed Cost Control for Uncertain Discrete-Time Systems with State Delay

  • Fang, Xiaosheng;Wang, Jingcheng;Zhang, Bin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.2
    • /
    • pp.151-157
    • /
    • 2008
  • A non-fragile guaranteed cost control (GCC) problem is presented for a class of discrete time-delay nonlinear systems described by Takagi-Sugeno (T-S) fuzzy model. The systems are assumed to have norm-bounded time-varying uncertainties in the matrices of state, delayed state and control gains. Sufficient conditions are first obtained which guarantee that the closed-loop system is asymptotically stable and the closed-loop cost function value is not more than a specified upper bound. Then the design method of the non-fragile guaranteed cost controller is formulated in terms of the linear matrix inequality (LMI) approach. A numerical example is given to illustrate the effectiveness of the proposed design method.

A Single-Input Single-Output Approach by using Minor-Loop Voltage Feedback Compensation with Modified SPWM Technique for Three-Phase AC-DC Buck Converter

  • Alias, Azrita;Rahim, Nasrudin Abd.;Hussain, Mohamed Azlan
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.829-840
    • /
    • 2013
  • The modified sinusoidal pulse-width modulation (SPWM) is one of the PWM techniques used in three-phase AC-DC buck converters. The modified SPWM works without the current sensor (the converter is current sensorless), improves production of sinusoidal AC current, enables obtainment of near-unity power factor, and controls output voltage through modulation gain (ranging from 0 to 1). The main problem of the modified SPWM is the huge starting current and voltage (during transient) that results from a large step change from the reference voltage. When the load changes, the output voltage significantly drops (through switching losses and non-ideal converter elements). The single-input single-output (SISO) approach with minor-loop voltage feedback controller presented here overcomes this problem. This approach is created on a theoretical linear model and verified by discrete-model simulation on MATLAB/Simulink. The capability and effectiveness of the SISO approach in compensating start-up current/voltage and in achieving zero steady-state error were tested for transient cases with step-changed load and step-changed reference voltage for linear and non-linear loads. Tests were done to analyze the transient performance against various controller gains. An experiment prototype was also developed for verification.

A Physical-layer Security Scheme Based on Cross-layer Cooperation in Dense Heterogeneous Networks

  • Zhang, Bo;Huang, Kai-zhi;Chen, Ya-jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.6
    • /
    • pp.2595-2618
    • /
    • 2018
  • In this paper, we investigate secure communication with the presence of multiple eavesdroppers (Eves) in a two-tier downlink dense heterogeneous network, wherein there is a macrocell base station (MBS) and multiple femtocell base stations (FBSs). Each base station (BS) has multiple users. And Eves attempt to wiretap a macrocell user (MU). To keep Eves ignorant of the confidential message, we propose a physical-layer security scheme based on cross-layer cooperation to exploit interference in the considered network. Under the constraints on the quality of service (QoS) of other legitimate users and transmit power, the secrecy rate of system can be maximized through jointly optimizing the beamforming vectors of MBS and cooperative FBSs. We explore the problem of maximizing secrecy rate in both non-colluding and colluding Eves scenarios, respectively. Firstly, in non-colluding Eves scenario, we approximate the original non-convex problem into a few semi-definite programs (SDPs) by employing the semi-definite relaxation (SDR) technique and conservative convex approximation under perfect channel state information (CSI) case. Furthermore, we extend the frame to imperfect CSI case and use the Lagrangian dual theory to cope with uncertain constraints on CSI. Secondly, in colluding Eves scenario, we transform the original problem into a two-tier optimization problem equivalently. Among them, the outer layer problem is a single variable optimization problem and can be solved by one-dimensional linear search. While the inner-layer optimization problem is transformed into a convex SDP problem with SDR technique and Charnes-Cooper transformation. In the perfect CSI case of both non-colluding and colluding Eves scenarios, we prove that the relaxation of SDR is tight and analyze the complexity of proposed algorithms. Finally, simulation results validate the effectiveness and robustness of proposed scheme.

Topology Optimization for Large-displacement Compliant Mechanisms Using Element Free Galerkin Method

  • Du, Yixian;Chen, Liping
    • International Journal of CAD/CAM
    • /
    • v.8 no.1
    • /
    • pp.1-10
    • /
    • 2009
  • This paper presents a topology optimization approach using element-free Galerkin method (EFGM) for the optimal design of compliant mechanisms with geometrically non-linearity. Meshless method has an advantage over the finite element method(FEM) because it is more capable of handling large deformation resulted from geometrical nonlinearity. Therefore, in this paper, EFGM is employed to discretize the governing equations and the bulk density field. The sensitivity analysis of the optimization problem is performed by incorporating the adjoint approach with the meshless method. The Lagrange multipliers method adjusted for imposition of both the concentrated and continuous essential boundary conditions in the EFGM is proposed in details. The optimization mathematical formulation is developed to convert the multi-criteria problem to an equivalent single-objective problem. The popularly applied interpolation scheme, solid isotropic material with penalization (SIMP), is used to indicate the dependence of material property upon on pseudo densities discretized to the integration points. A well studied numerical example has been applied to demonstrate the proposed approach works very well and the non-linear EFGM can obtain the better topologies than the linear EFGM to design large-displacement compliant mechanisms.

Simulating flow-induced fiber motion with finite element based explicit coupling method

  • Diwei Zhang;Xiaobo Peng;Dongdong Zhang
    • Advances in Computational Design
    • /
    • v.9 no.3
    • /
    • pp.229-252
    • /
    • 2024
  • This paper presents a finite element based explicit coupling method. The derived method is proposed to solve a certain type of fluid-structure interaction problem, which is the motion of a single or flexible fiber with the motion induced by the low-Reynolds-number fluid. The particle motion is treated as a non-linear geometric dynamic problem. The Total-lagrangian finite element method is applied to describe and discretize the particle domain. The Bathe method is used to integrate the time domain. The Stokes equation is used as the governing equation of the fluid domain. The inertia term of the Stokes equation is ignored, and Reynolds number flow is assumed as zero. Since the time term is also canceled, we solve it as a quasi-static problem. Mixed finite element is to solve the fluid equation. An explicit strategy is implemented to couple the particle and the zero-Reynolds number flow. Simulations with the proposed method are presented, including the motion of single and double rigid particle immersed in the double Couette flow and the Poiseuille flow. Simulation of single flexible fiber immersed in a Poiseuille flow is also presented. Effect of particle's density, aspect ratio, and geometry are discussed.

Invitation to Levitotion Contro: Problems Expecting a Smart Solution

  • Kim, Kook-Hun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.316-320
    • /
    • 1993
  • Electromagnetic suspension (E.M.S) type levitation system is studied in the control system design viewpoint. Dynamic characteristics in theoretical analysis as well as hardware implementation is considered. Open loop unstable, non-linear and timevarying characteristics are reviewed in the theoretcal section, while levitation control system for multi-vehicle train as well as magnet drive system is reviewed in the practical section. This paper suggests not only some well-known problem appearing in levitation control system design but also a subtle problem and solution candidates. But there exist many unmentioned problems wating for a smart problem solver.

  • PDF

A Multi-period Behavioral Model for Portfolio Selection Problem

  • Pederzoli, G.;Srinivasan, R.
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.6 no.2
    • /
    • pp.35-49
    • /
    • 1981
  • This paper is concerned with developing a Multi-period Behavioral Model for the portfolio selection problem. The unique feature of the model is that it treats a number of factors and decision variables considered germane in decision making on an interrelated basis. The formulated problem has the structure of a Chance Constrained programming Model. Then empoloying arguments of Central Limit Theorem and normality assumption the stochastic model is reduced to that of a Non-Linear Programming Model. Finally, a number of interesting properties for the reduced model are established.

  • PDF

EXISTENCE OF SOLUTION OF FINITE SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS

  • Ohm, Mi-Ray
    • Bulletin of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.309-318
    • /
    • 1994
  • The approach presented in this paper is based on the transformation of the Stefan problem in one space dimension to an initial-boundary value problem for the heat equation in a fixed domain. Of course, the problem is non-linear. The finite element approximation adopted here is the standared continuous Galerkin method in time. In this paper, only the regular case is discussed. This means the error analysis is based on the assumption that the solution is sufficiently smooth. The aim of this paper is the existence of the solution in a finite Galerkin system of ordinary equations.

  • PDF