• 제목/요약/키워드: non-linear least squares method

검색결과 52건 처리시간 0.026초

캘콘기를 가지는 메타크릴레이트 고분자: 모노머 반응성비와 열적 광학적 성질 (Methacrylate Polymers Having Pendant Chalcone Moieties: Monomer Reactivity Ratios, Thermal and Optical Properties)

  • Barim, Gamze;Altun, Ozgul;Yayla, Mustafa Gokhun
    • 폴리머
    • /
    • 제39권1호
    • /
    • pp.13-22
    • /
    • 2015
  • A new methacrylate copolymer that includes chalcone as a side group, poly(4-methacryloyloxyphenyl-4'-methoxystyryl ketone-co-styrene) was synthesized by free radical copolymerization. FTIR and $^1H$ NMR spectroscopic techniques were used to characterize the homopolymers and copolymers. The copolymerizations were carried out to high conversions. Copolymer compositions were established by $^1H$ NMR spectra analysis. The monomer reactivity ratios for copolymer system were determined by the linearized Kelen $T{\ddot{u}}d{\ddot{o}}s$, and Extended Kelen $T{\ddot{u}}d{\ddot{o}}s$ methods and a non-linear least squares method. The molecular weights and polydispersity index of copolymers were measured by using the gel permeation chromatography (GPC). The effect of copolymer compositions on their thermal behavior were studied by differential scanning calorimetry and thermogravimetric analysis methods. The optical properties of the resulting copolymer were also investigated.

TOA Based Indoor Positioning Algorithm in NLOS Environments

  • Lim, Jaewook;Lee, Chul-Soo;Seol, Dong-Min;Jung, Sunghun;Lee, Sangbeom
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제10권2호
    • /
    • pp.121-130
    • /
    • 2021
  • In this paper, we propose a method to improve the positioning accuracy of TOA based indoor positioning system in NLOS environments. TOA based indoor positioning systems have been studied mostly considering LOS environments. However, it is almost impossible to maintain the LOS environments due to obstacles such as people, furniture, walls, and so on. The proposed method in this study compensates the range error caused by the NLOS environments. We confirmed that positioning accuracy of a proposed method is improved than conventional algorithms through simulation and field test.

비선형 부하를 고려한 새로운 부하합성 기법 (A New Load Aggregation Method in Consideration of Non-linear Load)

  • 이종필;김성수
    • 전기학회논문지P
    • /
    • 제61권4호
    • /
    • pp.168-173
    • /
    • 2012
  • The aggregation of group loads, which consists of the linear and the non-linear systems, yields the error involved in the reactive power aggregation, which is greater than the active power aggregation in the component based load modeling. Each individual reactive power in a group load affects the aggregated load different from composition rate. This paper proposes a new method that determines the degree of impacts by adjusting the coefficient of weight factors of each load using the least squares error method. The effectiveness of proposed algorithm is demonstrated by simulating three aggregation cases.

가우시안 포락선 선형 첩 신호의 순시 주파수 추정을 통한 원전 내 계측 케이블의 고장점 진단 연구 (Instantaneous Frequency Estimation of the Gaussian Enveloped Linear Chirp Signal for Localizing the Faults of the Instrumental Cable in Nuclear Power Plant)

  • 이춘구;박진배;윤태성
    • 전기학회논문지
    • /
    • 제62권7호
    • /
    • pp.987-993
    • /
    • 2013
  • Integrity of the control and instrumental cables in nuclear power plant is important to maintain the stability of the nuclear power plants. In order to diagnose the integrity of the cables, the diagnostic methods based on reflectometry have been studied. The reflectometry is a non-destructive method and it is applicable to diagnose the live cables. We introduce a Gaussian enveloped linear chirp reflectometry to diagnose the cables in the nuclear power plants. In this paper, we estimate the instantaneous frequency of the Gaussian enveloped linear chirp signal by using the weighted robust least squares filtering to localize the impedance discontinuities in the class 1E instrumental cable.

FINITE ELEMENT ANALYSIS FOR DISCONTINUOUS MAPPED HEXA MESH MODEL WITH IMPROVED MOVING LEAST SQUARES SCHEME

  • Tezuka, Akira;Oishi, Chihiro;Asano, Naoki
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 2001년도 The Seoul International Simulation Conference
    • /
    • pp.373-379
    • /
    • 2001
  • There is a big issue to generate 3D hexahedral finite element (FE) model, since a process to divide the whole domain into several simple-shaped sub-domains is required before generating a continuous mesh with mapped mesh generators. In general, it is nearly impossible to set up proper division numbers interactively to keep mesh connectivity between sub-domains on a complicated arbitrary-shaped domain. If mesh continuity between sub-domains is not required in an analysis, this complicated process can be omitted. Element-free Galerkin method (EFGM) can accept discontinuous meshes, which only requires nodal information. However it is difficult to choose a reasonable influenced domain in moving least squares scheme with non-uniformly distributed nodes in discontinuous FE models. A new FE scheme fur discontinuous mesh is proposed in this paper by applying improved EFGM with some modification to derive FE approximated function in discontinuous parts. Its validity is evaluated on linear elastic problems.

  • PDF

기체의 평균 움직임 추정에 기반한 무인항공기 영상 안정화 알고리즘 (UAV(Unmanned Aerial Vehicle) image stabilization algorithm based on estimating averaged vehicle motion)

  • 이홍석;고윤호;김병수
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2009년도 정보 및 제어 심포지움 논문집
    • /
    • pp.216-218
    • /
    • 2009
  • This paper proposes an image processing algorithm to stabilize shaken scenes of UAV(Unmanned Aerial Vehicle) caused by vehicle self-vibration and aerodynamic disturbance. The proposed method stabilizes images by compensating estimated shake motion which is evaluated from global motion. The global motion between two continuous images modeled by 6 parameter warping model is estimated by non-linear square method based on Gauss-Newton algorithm with excluding outlier region. The shake motion is evaluated by subtracting the global motion from aerial vehicle motion obtained by averaging global motion. Experimental results show that the proposed method stabilize shaken scenes effectively.

  • PDF

Measurement uncertainty evaluation in FaroArm-machine using the bootstrap method

  • Horinov, Sherzod;Shaymardanov, Khurshid;Tadjiyev, Zafar
    • Journal of Multimedia Information System
    • /
    • 제2권3호
    • /
    • pp.255-262
    • /
    • 2015
  • The modern manufacturing systems and technologies produce products that are more accurate day by day. This can be reached mainly by improvement the manufacturing process with at the same time restricting more and more the quality specifications and reducing the uncertainty in part. The main objective an industry becomes to lower the part's variability, since the less variability - the better is product. One of the part of this task is measuring the object's uncertainty. The main purpose of this study is to understand the application of bootstrap method for uncertainty evaluation. Bootstrap method is a collection of sample re-use techniques designed to estimate standard errors and confidence intervals. In the case study a surface of an automobile engine block - (Top view side) is measured by Coordinate Measuring Machine (CMM) and analyzed for uncertainty using Geometric Least Squares in complex with bootstrap method. The designed experiment is composed by three similar measurements (the same features in unique reference system), but with different points (5, 10, 20) concentration at each level. Then each cloud of points was independently analyzed by means of non-linear Least Squares, after estimated results have been reported. A MatLAB software tool used to generate new samples using bootstrap function. The results of the designed experiment are summarized and show that the bootstrap method provides the possibility to evaluate the uncertainty without repeating the Coordinate Measuring Machine (CMM) measurements many times, i.e. potentially can reduce the measuring time.

Non-iterative pulse tail extrapolation algorithms for correcting nuclear pulse pile-up

  • Mohammad-Reza Mohammadian-Behbahani
    • Nuclear Engineering and Technology
    • /
    • 제55권12호
    • /
    • pp.4350-4356
    • /
    • 2023
  • Radiation detection systems working at high count rates suffer from the overlapping of their output electric pulses, known as pulse pile-up phenomenon, resulting in spectrum distortion and degradation of the energy resolution. Pulse tail extrapolation is a pile-up correction method which tries to restore the shifted baseline of a piled-up pulse by extrapolating the overlapped part of its preceding pulse. This needs a mathematical model which is almost always nonlinear, fitted usually by a nonlinear least squares (NLS) technique. NLS is an iterative, potentially time-consuming method. The main idea of the present study is to replace the NLS technique by an integration-based non-iterative method (NIM) for pulse tail extrapolation by an exponential model. The idea of linear extrapolation, as another non-iterative method, is also investigated. Analysis of experimental data of a NaI(Tl) radiation detector shows that the proposed non-iterative method is able to provide a corrected spectrum quite similar with the NLS method, with a dramatically reduced computation time and complexity of the algorithm. The linear extrapolation approach suffers from a poor energy resolution and throughput rate in comparison with NIM and NLS techniques, but provides the shortest computation time.

근접감시용 무인항공기 시스템을 위한 영상 안정화 알고리즘 (Image Stabilization Algorithm for Close Watching UAV(Unmanned Aerial Vehicle) Aystem)

  • 이홍석;이태영;김병수;고윤호
    • 대한전자공학회논문지SP
    • /
    • 제47권6호
    • /
    • pp.10-18
    • /
    • 2010
  • 본 논문에서는 움직임 분리와 안정화 모드를 이용하여 근접감시용 무인항공기의 영상을 안정화 시키는 알고리즘을 제안하였다. 무인 항공기에서 촬영된 영상에는 임무에 의한 움직임과 기체의 진동에 의한 움직임이 혼합되어 나타난다. 영상을 안정화하기 위해서는 진동에 의한 움직임을 제거하여야 한다. 제안된 알고리즘에서는 연속된 두 영상의 전역움직임을 6계수 움직임 모형과 2계수 밝기변화 모형으로 모델링하고 Gauss-Newton 알고리즘에 기반한 비선형 최소 제곱법(non-linear least squares)을 이용하여 움직임을 추정하였다. 추정된 움직임에서 IIR 필터를 이용하여 진동에 의한 움직임을 분리하여 제거함으로서 영상을 안정화 하였다. 또한 안정화 영상 생성시 시점의 변화가 많은 실제 무인항공영상에 적용하기 위하여 초기화 상태와 안정화 상태의 두 가지의 상태를 가지는 안정화 모드를 제안하였다. 실험결과 99%의 정확도로 전역 움직임을 추정하였고, 90%의 진동에 의한 움직임 제거 성능을 보였다. 또한, 제안한 알고리즘을 실제 항공영상에 적용하여 영상이 안정화 되는 것을 확인하였다.

Reliability-based combined high and low cycle fatigue analysis of turbine blade using adaptive least squares support vector machines

  • Ma, Juan;Yue, Peng;Du, Wenyi;Dai, Changping;Wriggers, Peter
    • Structural Engineering and Mechanics
    • /
    • 제83권3호
    • /
    • pp.293-304
    • /
    • 2022
  • In this work, a novel reliability approach for combined high and low cycle fatigue (CCF) estimation is developed by combining active learning strategy with least squares support vector machines (LS-SVM) (named as ALS-SVM) surrogate model to address the multi-resources uncertainties, including working loads, material properties and model itself. Initially, a new active learner function combining LS-SVM approach with Monte Carlo simulation (MCS) is presented to improve computational efficiency with fewer calls to the performance function. To consider the uncertainty of surrogate model at candidate sample points, the learning function employs k-fold cross validation method and introduces the predicted variance to sequentially select sampling. Following that, low cycle fatigue (LCF) loads and high cycle fatigue (HCF) loads are firstly estimated based on the training samples extracted from finite element (FE) simulations, and their simulated responses together with the sample points of model parameters in Coffin-Manson formula are selected as the MC samples to establish ALS-SVM model. In this analysis, the MC samples are substituted to predict the CCF reliability of turbine blades by using the built ALS-SVM model. Through the comparison of the two approaches, it is indicated that the reliability model by linear cumulative damage rule provides a non-conservative result compared with that by the proposed one. In addition, the results demonstrate that ALS-SVM is an effective analysis method holding high computational efficiency with small training samples to gain accurate fatigue reliability.