• 제목/요약/키워드: non-linear dynamic analyses

검색결과 90건 처리시간 0.023초

Earthquake performance evaluation of three-dimensional roller compacted concrete dams

  • Kartal, Murat Emre;Karabulut, Muhammet
    • Earthquakes and Structures
    • /
    • 제14권2호
    • /
    • pp.167-178
    • /
    • 2018
  • A roller compacted concrete (RCC) dam should be analyzed under seismic ground motions for different conditions such as empty reservoir and full reservoir conditions. This study presents three-dimensional earthquake response and performance of a RCC dam considering materially non-linearity. For this purpose, Cine RCC dam constructed in Aydın, Turkey, is selected in applications. The three-dimensional finite element model of Cine RCC dam is obtained using ANSYS software. The Drucker-Prager material model is considered in the materially nonlinear time history analyses for concrete and foundation rock. Furthermore, hydrodynamic effect was investigated in linear and non-linear dynamic analyses. Researchers observe that how the tensile and compressive stresses change by hydrodynamic pressure effect. The hydrodynamic pressure of the reservoir water is modeled with the fluid finite elements based on the Lagrangian approach. In this study, dam body and foundation are modeled with welded contact. The displacements and principle stress components obtained from the linear and non-linear analyses with and without reservoir water are compared each other. Principle stresses during earthquake were obtained at the most critical point in the upstream face of dam body. Besides, the change of displacements and stresses by crest length were investigated. Moreover demand-capacity ratio criteria were also studied under linear dynamic and nonlinear analysis. Earthquake performance analyses were carried out for different cases and evaluated. According to linear and nonlinear analysis, hydrodynamic water effect is obvious in full reservoir situation. On the other hand, higher tensile stresses were observed in linear analyses and then non-linear analyses were performed and compared with each other.

Seismic performance evaluation for steel MRF: non linear dynamic and static analyses

  • Calderoni, B.;Rinaldi, Z.
    • Steel and Composite Structures
    • /
    • 제2권2호
    • /
    • pp.113-128
    • /
    • 2002
  • The performance of steel MRF with rigid connections, proportioned by adopting different capacity design criteria, is evaluated in order to highlight the effectiveness of static non-linear procedure in predicting the structural seismic behavior. In the framework of the performance-based design, some considerations are made on the basis of the results obtained by both dynamic time histories and push-over analyses, particularly with reference to the damage level and the structure ability to withstand a strong earthquake.

절리암반의 변형률 의존적 전단탄성계수 및 감쇠비 특성을 고려한 터널의 내진 해석 (Seismic analysis of tunnel considering the strain-dependent shear modulus and damping ratio of a Jointed rock mass)

  • 송기일;정성훈;조계춘;이정학
    • 한국터널지하공간학회 논문집
    • /
    • 제12권4호
    • /
    • pp.295-306
    • /
    • 2010
  • 암석과는 달리 절리암반은 변형률 의존적 변형특성(탄성계수 및 감쇠비)을 나타낸다. 탄성파를 이용한 현장실험을 통해 미소변형률 수준에서 암반의 최대탄성계수를 얻을 수 있으며 이를 내진 설계에 반영하고 있으나, 미소 변형률 이상의 중변형률($10^{-4}{\sim}0.5%$) 영역의 동적거동에 대한 실험적인 규명과 이에 대한 수치적 적용은 전무한 실정이다. 본 연구에서는 변형률 의존적 전단탄성계수 및 감쇠비의 비선형 거동 특성을 반영하여 동적해석을 수행할 수 있는 FLAC3D 해석 모듈을 개발하였다. 리커 웨이브의 파동 변화를 분석하여 개발된 모듈에 대한 검증을 수행하였다. 절리 암반의 탄성파 전파특성과 동적 거동특성을 모사할 수 있는 절리암반 공진주 시험장비를 통하여 현장에서 채취한 절리암반의 변형률 의존적 전단탄성 계수의 감쇠 특성과 감쇠비의 증폭 특성을 획득하였다. 개발된 비선형 해석 모듈에 실험으로부터 획득된 거동 특성을 반영하여 수직구와 사갱의 접속부에 대한 내진 안정성 평가를 수행하였다. 내진해석 결과, 비선형 해석이 선형 해석보다 더 큰 연직변위와 수평변위 결과를 나타냈다. 라이닝의 휨압축응력은 수직구과 사갱의 접속부에서 집중되는 것으로 나타났으며 비선형해석의 경우 라이닝에 더 큰 휨압축응력이 발생되는 것으로 나타났다. 본 연구를 통하여 변형률 의존적 절리암반의 비선형 거동특성을 보다 깊이 있게 이해하고 해석 및 설계시 고려할 수 있을 것으로 사료된다.

Dynamic Analysis of a Geometrical Non-Linear Plate Using the Continuous-Time System Identification

  • Lim, Jae-Hoon;Choi, Yeon-Sun
    • Journal of Mechanical Science and Technology
    • /
    • 제20권11호
    • /
    • pp.1813-1822
    • /
    • 2006
  • The dynamic analysis of a plate with non-linearity due to large deformation was investigated in this study. There have been many theoretical and numerical analyses of the non-linear dynamic behavior of plates examining theoretically or numerically. The problem is how correctly an analytical model can represent the dynamic characteristics of the actual system. To address the issue, the continuous-time system identification technique was used to generate non-linear models, for stiffness and damping terms, and to explain the observed behaviors with single mode assumption after comparing experimental results with the numerical results of a linear plate model.

Investigating the effects of span arrangements on DDBD-designed RC buildings under the skew seismic attack

  • Alimohammadi, Dariush;Abadi, Esmaeel Izadi Zaman
    • Structural Engineering and Mechanics
    • /
    • 제77권1호
    • /
    • pp.115-135
    • /
    • 2021
  • This paper focuses on examining the effects of span arrangements on displacement responses of plan-symmetric RC frame buildings designed using the direct displacement-based design (DDBD) method by employing non-linear analyses and the skew seismic attack. In order to show the desired performance of DDBD design approach, the force-based design approach is also used to examine the seismic performance of the selected structures. To realize this objective, 8-story buildings with different plans are selected. In addition, the dynamic behavior of the structures is evaluated by selecting 3, 7, and 12-story buildings. In order to perform non-linear analyses, OpenSees software is used for modeling buildings. Results of an experimental model are used to validate the analytical model implemented in OpenSees. The results of non-linear static and non-linear dynamic analyses indicate that changing span arrangements does not affect estimating the responses of structures designed using the DDBD approach, and the results are more or less the same. Next, in order to apply the earthquake in non-principle directions, DDBD structures, designed for one-way performance, are designed again for two-way performance. Time history analyses are performed under a set of artificial acceleration pairs, applied to structures at different angles. It is found that the mean maximum responses of earthquakes at all angles have very good agreement with the design-acceptable limits, while the response of buildings along the height direction has a relatively acceptable and uniform distribution. Meanwhile, changes in the span arrangements did not have a significant effect on displacement responses.

Nonlinear seismic response of a masonry arch bridge

  • Sayin, Erkut
    • Earthquakes and Structures
    • /
    • 제10권2호
    • /
    • pp.483-494
    • /
    • 2016
  • Historical structures that function as a bridge from past to present are the cultural and social reflections of societies. Masonry bridges are one of the important historical structures. These bridges are vulnerable against to seismic action. In this study, linear and non-linear dynamic analyses of historical Nadir Bridge are assessed. The bridge is modelled with three dimensional finite elements. For the seismic effect, artificial acceleration records are generated considering the seismic characteristics of the region where the bridge is located. Seismic response of the bridge is investigated.

Fragility curves for the typical multi-span simply supported bridges in northern Pakistan

  • Waseem, Muhammad;Spacone, Enrico
    • Structural Engineering and Mechanics
    • /
    • 제64권2호
    • /
    • pp.213-223
    • /
    • 2017
  • Bridges are lifeline and integral components of transportation system that are susceptible to seismic actions, their vulnerability assessment is essential for seismic risk assessment and mitigation. The vulnerability assessment of bridges common in Pakistan is very important as it is seismically very active region and the available code for the seismic design of bridges is obsolete. This research presents seismic vulnerability assessment of three real case simply supported multi-span reinforced concrete bridges commonly found in northern Pakistan, having one, two and three bents with circular piers. The vulnerability assessment is carried through the non-linear dynamic time history analyses for the derivation of fragility curves. Finite element based numerical models of the bridges were developed in MIDAS CIVIL (2015) and analyzed through with non-linear dynamic and incremental dynamic analyses, using a suite of bridge-specific natural spectrum compatible ground motion records. Seismic responses of shear key, bearing pad, expansion joint and pier components of each bridges were recorded during analysis and retrieved for performance based analysis. Fragility curves were developed for the bearing pads, shear key, expansion joint and pier of the bridges that first reach ultimate limit state. Dynamic analysis and the derived fragility curves show that ultimate limit state of bearing pads, shear keys and expansion joints of the bridges exceed first, followed by the piers ultimate limit state for all the three bridges. Mean collapse capacities computed for all the components indicated that bearing pads, expansion joints, and shear keys exceed the ultimate limit state at lowest seismic intensities.

기하학적 비선형성을 갖는 평판의 동특성 해석 (Dynamic Analysis of a Geometrical Non-linear Plate)

  • 임재훈;최연선
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.498-503
    • /
    • 2003
  • Dynamic analysis of a plate with non-linearity due to large deformation is performed in the study. There have been many researches about the non-linear dynamic behavior of plates examining by means of theoretical or numerical analyses. But it is important how exactly model the actual system. In this respect, the Continuous-Time system identification technique is used to generate non-linear models, for stiffness and damping terms, to explain the observed behaviors with single mode assumptions for the simplicity after comparing the experimental results with the numerical results of a linear plate model.

  • PDF

Seismic analysis of Roller Compacted Concrete (RCC) dams considering effect of viscous boundary conditions

  • Karabulut, Muhammet;Kartal, Murat E.
    • Computers and Concrete
    • /
    • 제25권3호
    • /
    • pp.255-266
    • /
    • 2020
  • This study presents comparation of fixed and viscos boundary condition effects on three-dimensional earthquake response and performance of a RCC dam considering linear and non-linear response. For this purpose, Cine RCC dam constructed in Aydın, Turkey, is selected in applications. The Drucker-Prager material model is considered for concrete and foundation rock in the nonlinear time-history analyses. Besides, hydrodynamic effect was considered in linear and non-linear dynamic analyses for both conditions. The hydrodynamic pressure of the reservoir water is modeled with the fluid finite elements based on the Lagrangian approach. The contact-target element pairs were used to model the dam-foundation-reservoir interaction system. The interface between dam and foundation is modeled with welded contact for both fixed and viscos boundary conditions. The displacements and principle stress components obtained from the linear and non-linear analyses are compared each other for empty and full reservoir cases. Seismic performance analyses considering demand-capacity ratio criteria were also performed for each case. According to numerical analyses, the total displacements and besides seismic performance of the dam increase by the effect of the viscous boundary conditions. Besides, hydrodynamic pressure obviously decreases the performance of the dam.

Instability and vibration analyses of FG cylindrical panels under parabolic axial compressions

  • Kumar, Rajesh;Dey, Tanish;Panda, Sarat K.
    • Steel and Composite Structures
    • /
    • 제31권2호
    • /
    • pp.187-199
    • /
    • 2019
  • This paper presents the semi-analytical development of the dynamic instability behavior and the dynamic response of functionally graded (FG) cylindrical shallow shell panel subjected to different type of periodic axial compression. First, in prebuckling analysis, the stresses distribution within the panels are determined for respective loading type and these stresses are used to study the dynamic instability behavior and the dynamic response. The prebuckling stresses within the shell panel are the same as applied in-plane edge loading for the case of uniform and linearly varying loadings. However, this is not true for the case of parabolic loadings. The parabolic edge loading produces all the stresses (${\sigma}_{xx}$, ${\sigma}_{yy}$ and ${\tau}_{xy}$) within the FG cylindrical panel. These stresses are evaluated by minimizing the membrane energy via Ritz method. Using these stresses the partial differential equations of FG cylindrical panel are formulated by applying Hamilton's principal assuming higher order shear deformation theory (HSDT) and von-$K{\acute{a}}rm{\acute{a}}n$ non-linearity. The non-linear governing partial differential equations are converted into a set of Mathieu-Hill equations via Galerkin's method. Bolotin method is adopted to trace the boundaries of instability regions. The linear and non-linear dynamic responses in stable and unstable region are plotted to know the characteristics of instability regions of FG cylindrical panel. Moreover, the non-linear frequency-amplitude responses are obtained using Incremental Harmonic Balance (IHB) method.