• Title/Summary/Keyword: non-linear dynamic

Search Result 691, Processing Time 0.026 seconds

Simple and Sensitive Liquid Chromatography Electrospray Ionization Mass Spectrometry Method for Determination of Glycoalkaloids in Potato (Solanum tuberosum L.)

  • Kim, Jae-Kwang;Bae, Shin-Cheol;Baek, Hyung-Jin;Seo, Hyo-Won;Ryu, Tae-Hun;Kim, Jung-Bong;Won, So-Youn;Sohn, Soo-In;Kim, Dong-Hern;Kim, Sun-Ju;Cho, Myoung-Rae
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.113-117
    • /
    • 2009
  • A method was developed using enhanced liquid chromatography coupled with electrospray ionization mass spectrometry for the analysis and quantitation of 2 main potato glycoalkaloids, $\alpha$-chaconine, and $\alpha$-solanine, without any pre-concentration or derivatisation steps. Calibration curves generated by this technique exhibited a linear dynamic range from 0.025 to $50{\mu}g/mL$ and from 0.05 to $50{\mu}g/mL$ for $\alpha$-chaconine and $\alpha$-solanine, respectively. Matrix effects were evaluated by comparing calibration curves measured in matrix-matched and solvent-based systems. Ion suppression due to matrix effects was weak and extraction recoveries of 88 to 114% were obtained in different sample matrices spiked with analyte concentrations ranging from 15 to $35{\mu}g/mL$. Potatoes that had been genetically modified to tolerate glufosinate contained the same glycoalkaloid levels as their non-transgenic counterpart. We suggest complementing compositional comparison assessment strategy by validating quantitative analytical methods for the toxic glycoalkaloids in potato plants.

STRESS ANALYSIS ON THE DIFFERENT CLASPS OF THE REMOVABLE PARTIAL DENTURE BY THREE-DIMENSIONAL FINITE ELEMENT METHOD (삼차원 유한 요소법에 의한 가철성 국소의치 클래스프의 응력 분석)

  • Park Hong-Ryul;Kim Seong-Kyun;Koak Jai-Young;Heo Seong-Joo;Chang Ik-Tae
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.2
    • /
    • pp.218-231
    • /
    • 2005
  • Statement of problem. In the partially edentulous patients, removable partial dentures have been working as a important treatment modality. Clasps, a kind of direct retainers, received some amount of stresses during the insertion and removal of partial denture on the abutment tooth. Purpose. The study is to investigate stresses of the different clasps. Material and methods. In order to investigate the degree of stresses, maxillary partial edentulism (Kennedy Class II modification I) was assumed and removable partial dentures were designed on it with three kinds of metallic materials; cobalt-chromium alloy, type IV gold alloy and commercially pure (c.p.) titanium. Aker's clasp was applied on the left second molar. RPA (mesial rest-proximal plate-Aker's) clasp was on the left first premolar and wrought wire clasp was on the right first premolar. Three dimensional, non-linear, dynamic finite element analysis method was run to solve this process. Results. 1. Cobalt-chromium alloy had the highest von Mises stress value and c.p. titanium had the lowest one irrespective of the types of clasps. 2. In the Aker's clasps, stress on the retentive tips was shown shortly after the appearance of stresses of the middle and minor connector areas. These time lag was much shorter in the RPA clasps than in the Aker's clasp. 3. In general. retentive tips of wrought wire clasps had much less amount of stress than other clasps. Conclusion. The amount of stress was the highest in the RPA clasp and the lowest in the wrought wire clasp, in general.

A Defect Inspection Method in TFT-LCD Panel Using LS-SVM (LS-SVM을 이용한 TFT-LCD 패널 내의 결함 검사 방법)

  • Choi, Ho-Hyung;Lee, Gun-Hee;Kim, Ja-Geun;Joo, Young-Bok;Choi, Byung-Jae;Park, Kil-Houm;Yun, Byoung-Ju
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.6
    • /
    • pp.852-859
    • /
    • 2009
  • Normally, to extract the defect in TFT-LCD inspection system, the image is obtained by using line scan camera or area scan camera which is achieved by CCD or CMOS sensor. Because of the limited dynamic range of CCD or CMOS sensor as well as the effect of the illumination, these images are frequently degraded and the important features are hard to decern by a human viewer. In order to overcome this problem, the feature vectors in the image are obtained by using the average intensity difference between defect and background based on the weber's law and the standard deviation of the background region. The defect detection method uses non-linear SVM (Supports Vector Machine) method using the extracted feature vectors. The experiment results show that the proposed method yields better performance of defect classification methods over conveniently method.

Development of the similitude law considering the intensity-dependent variation of natural frequency of pile foundation system (말뚝 기초 고유진동수의 가속도 크기 의존성을 고려한 상사법칙 개발)

  • Choi, Jung-In;Yoo, Min-Teak;Kim, Sung-Yul;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.905-912
    • /
    • 2009
  • 1-g shaking table test is conducted to evaluate the dynamic behavior of a soil-structure system under seismic loading condition. A consistent similitude law between the model and prototype is needed to predict the behavior of the prototype structure, quantitatively. The natural frequency of geomaterial decreases with the increase of shaking intensity because of the non-linear property of the geomaterial. This phenomenon affects the applicability of similitude laws in 1-g shaking table tests. In this study, a simple method is suggested to determine the frequency of the input motions in 1-g tests in order to enhance the applicability of similitude laws. Modified input frequency is calculated using the frequency ratio with consideration of the variation of the natural frequency according to the intensity of input ground acceleration. To verify the applicability of the suggested method, a series of 1-g shaking table tests were performed for three different sizes of model piles having an overburden mass on their heads by varying the acceleration and the frequency of input motion. The acceleration amplification ratio on the overburden mass, the lateral displacement at the pile head and the maximum bending moment along the pile depth were measured. The projected behaviors of the virtual prototype based on the measured values of the model tests, where the input frequencies were calculated by the new method, showed good consistency, verifying the applicability of the suggested method.

  • PDF

Large deflection behavior and stability of slender bars under self weight

  • Goncalves, Paulo B.;Jurjo, Daniel Leonardo B.R.;Magluta, Carlos;Roitman, Ney;Pamplona, Djenane
    • Structural Engineering and Mechanics
    • /
    • v.24 no.6
    • /
    • pp.709-725
    • /
    • 2006
  • In this paper the buckling and post-buckling behavior of slender bars under self-weight are studied. In order to study the post-buckling behavior of the bar, a geometrically exact formulation for the non-linear analysis of uni-directional structural elements is presented, considering arbitrary load distribution and boundary conditions. From this formulation one obtains a set of first-order coupled nonlinear equations which, together with the boundary conditions at the bar ends, form a two-point boundary value problem. This problem is solved by the simultaneous use of the Runge-Kutta integration scheme and the Newton-Raphson method. By virtue of a continuation algorithm, accurate solutions can be obtained for a variety of stability problems exhibiting either limit point or bifurcational-type buckling. Using this formulation, a detailed parametric analysis is conducted in order to study the buckling and post-buckling behavior of slender bars under self-weight, including the influence of boundary conditions on the stability and large deflection behavior of the bar. In order to evaluate the quality and accuracy of the results, an experimental analysis was conducted considering a clamped-free thin-walled metal bar. As this kind of structure presents a high index of slenderness, its answers could be affected by the introduction of conventional sensors. In this paper, an experimental methodology was developed, allowing the measurement of static or dynamic displacements without making contact with the structure, using digital image processing techniques. The proposed experimental procedure can be used to a wide class of problems involving large deflections and deformations. The experimental buckling and post-buckling behavior compared favorably with the theoretical and numerical results.

Effects of uncertainties on seismic behaviour of optimum designed braced steel frames

  • Hajirasouliha, Iman;Pilakoutas, Kypros;Mohammadi, Reza K.
    • Steel and Composite Structures
    • /
    • v.20 no.2
    • /
    • pp.317-335
    • /
    • 2016
  • Concentrically braced steel frames (CBFs) can be optimised during the seismic design process by using lateral loading distributions derived from the concept of uniform damage distribution. However, it is not known how such structures are affected by uncertainties. This study aims to quantify and manage the effects of structural and ground-motion uncertainty on the seismic performance of optimum and conventionally designed CBFs. Extensive nonlinear dynamic analyses are performed on 5, 10 and 15-storey frames to investigate the effects of storey shear-strength and damping ratio uncertainties by using the Monte Carlo simulation method. For typical uncertainties in conventional steel frames, optimum design frames always exhibit considerably less inter-storey drift and cumulative damage compared to frames designed based on IBC-2012. However, it is noted that optimum structures are in general more sensitive to the random variation of storey shear-strength. It is shown that up to 50% variation in damping ratio does not affect the seismic performance of the optimum design frames compared to their code-based counterparts. Finally, the results indicate that the ground-motion uncertainty can be efficiently managed by optimizing CBFs based on the average of a set of synthetic earthquakes representing a design spectrum. Compared to code-based design structures, CBFs designed with the proposed average patterns exhibit up to 54% less maximum inter-storey drift and 73% less cumulative damage under design earthquakes. It is concluded that the optimisation procedure presented is reliable and should improve the seismic performance of CBFs.

Movement Simulation on the Path Planned by a Generalized Visibility Graph (일반화 가시성그래프에 의해 계획된 경로이동 시뮬레이션)

  • Yu, Kyeon-Ah;Jeon, Hyun-Joo
    • Journal of the Korea Society for Simulation
    • /
    • v.16 no.1
    • /
    • pp.31-37
    • /
    • 2007
  • The importance of NPC's role in computer games is increasing. An NPC must perform its tasks by perceiving obstacles and other characters and by moving through them. It has been proposed to plan a natural-looking path against fixed obstacles by using a generalized visibility graph. In this paper we develop the execution module for an NPC to move efficiently along the path planned on the generalized visibility graph. The planned path consists of line segments and arc segments, so we define steering behaviors such as linear behaviors, circular behaviors, and an arriving behavior for NPC's movements to be realistic and utilize them during execution. The execution module also includes the collision detection capability to be able to detect dynamic obstacles and uses a decision tree to react differently according to the detected obstacles. The execution module is tested through the simulation based on the example scenario in which an NPC interferes the other moving NPC.

  • PDF

3-D Configuration Effects of Prestressing Cable Bracing Used for Retrofitting a RC Frame Subjected to Seismic Damage (RC 골조의 내진 보강을 위한 예압 가새의 3-D 배치)

  • Lee, Jin-Ho;Oh, Sang-Gyun;Hisham, El-Ganzori
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.3
    • /
    • pp.183-191
    • /
    • 2003
  • A four-story reinforced concrete moment resisting frame damaged from an ultimate limit state earthquake is upgraded with prestressing cable bracing. The purpose of this study is to investigate the bracing configuration effects on the 3-D building response using thee different locations of the bracing systems for the retrofitted building. Since the previous work done by the author proved that static incremental loads to collapse analysis as a substitute to dynamic non-linear time history analysis was a valid alternative tool. Thus, static load to collapse analysis is solely applied to evaluate the seismic performance parameters of both the original and upgraded buildings in this study. In results, the exterior bracing system is effective in restraining torsional behavior of the structure under seismic loads, and no sudden failure occurs in this system that enhances the ductility of the building due to the gradual change of building stiffness as the lateral load increases.

Analysis of PIG Dynamics through Curved Section in Natural Gas Pipeline (천연가스 배관 곡관부에서의 피그 동적 거동 해석)

  • Kim D. K.;Nguyen T. T.;Yoo H. R.;Rho Y. W.;Kho Y.T.;Kim S. B.
    • Journal of the Korean Institute of Gas
    • /
    • v.6 no.1 s.17
    • /
    • pp.1-9
    • /
    • 2002
  • This paper presents simple models for flow and the PIG dynamics when it passes through a $90^{\circ}$ curved section of pipeline. The simulation has been done with two different operational boundary conditions. The solution fur non-linear hyperbolic partial equations for flow is given by using MOC. The Runge-Kuta method is used to solve the initial condition equation fur flow and the PIG dynamics equation. The simulation results show that the proposed model and solution can be used fur estimating the PIG dynamics when the pig runs in the pipeline including curved section. In this paper, dynamic modeling and its analysis for the PIG flow through $90^{\circ}$ curved pipe with compressible and unsteady flow are studied. The PIG dynamics model is derived by using Lagrange equation under assumption that it passes through 3 different sections in the curved pipeline such that it moves into, inside and out of the curved section. The downstream and up stream flow dynamics including the curved sections are solved using MOC. The effectiveness of the derived mathematical models is estimated by simulation results fur a low pressure natural gas pipeline including downward and upward curved sections. The simulation results show that the proposed model and solution can be used for estimating the PIG dynamics when we pig the pipeline including curved section.

  • PDF

The Implementation of a Battery Simulator with Atypical Characteristics of Batteries (비정형적 배터리 특성을 포함한 배터리 시뮬레이터의 구현)

  • Lee, Dong Sung;Lee, Seong-Won
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.11
    • /
    • pp.419-426
    • /
    • 2014
  • The recent trend of performance increase in the smart mobile devices demands more power consumption and lower batter life time. Among three battery models of mathematical model, electrochemical model and electric model, the Thevenin's equivalent circuit with non-linear function model of SOC in the electrical model is widely used. However, the OCV results have only limited accuracy because of the characteristic shift caused by temperature and age and atypical impedance property that cannot expressed by electrical components. In this paper, the new battery model that improves the accuracy of the existing models is proposed. In the proposed simulator the mathematical model for SOC characteristic is improved and the adjustment for the temperature, the age of battery and atypical electrical characteristics. In the experimental results of predicting of the battery in the static and dynamic state, the proposed simulator shows improved MSE comparing to the results of the existing methods.