• Title/Summary/Keyword: non-linear concrete

Search Result 392, Processing Time 0.027 seconds

Probability-based structural response of steel beams and frames with uncertain semi-rigid connections

  • Domenico, Dario De;Falsone, Giovanni;Laudani, Rossella
    • Structural Engineering and Mechanics
    • /
    • v.67 no.5
    • /
    • pp.439-455
    • /
    • 2018
  • Within a probabilistic framework, this paper addresses the determination of the static structural response of beams and frames with partially restrained (semi-rigid) connections. The flexibility of the nodal connections is incorporated via an idealized linear-elastic behavior of the beam constraints through the use of rotational springs, which are here considered uncertain for taking into account the largely scattered results observed in experimental findings. The analysis is conducted via the Probabilistic Transformation Method, by modelling the spring stiffness terms (or equivalently, the fixity factors of the beam) as uniformly distributed random variables. The limit values of the Eurocode 3 fixity factors for steel semi-rigid connections are assumed. The exact probability density function of a few indicators of the structural response is derived and discussed in order to identify to what extent the uncertainty of the beam constraints affects the resulting beam response. Some design considerations arise which point out the paramount importance of probability-based approaches whenever a comprehensive experimental background regarding the stiffness of the beam connection is lacking, for example in steel frames with semi-rigid connections or in precast reinforced concrete framed structures. Indeed, it is demonstrated that resorting to deterministic approaches may lead to misleading (and in some cases non-conservative) outcomes from a design viewpoint.

The Prediction of Failure Probability of Bridges using Monte Carlo Simulation and Lifetime Functions (몬테칼로법과 생애함수를 이용한 교량의 파괴확률예측)

  • Seung-Ie Yang
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.1
    • /
    • pp.116-122
    • /
    • 2003
  • Monte Carlo method is one of the powerful engineering tools especially to solve the complex non-linear problems. The Monte Carlo method gives approximate solution to a variety of mathematical problems by performing statistical sampling experiments on a computer. One of the methods to predict the time dependent failure probability of one of the bridge components or the bridge system is a lifetime function. In this paper, FORTRAN program is developed to predict the failure probability of bridge components or bridge system by using both system reliability and lifetime function. Monte Carlo method is used to generate the parameters of the lifetime function. As a case study, the program is applied to the concrete-steel bridge to predict the failure probability.

Simulation based improved seismic fragility analysis of structures

  • Ghosh, Shyamal;Chakraborty, Subrata
    • Earthquakes and Structures
    • /
    • v.12 no.5
    • /
    • pp.569-581
    • /
    • 2017
  • The Monte Carlo Simulation (MCS) based seismic fragility analysis (SFA) approach allows defining more realistic relationship between failure probability and seismic intensity. However, the approach requires simulating large number of nonlinear dynamic analyses of structure for reliable estimate of fragility. It makes the approach computationally challenging. The response surface method (RSM) based metamodeling approach which replaces computationally involve complex mechanical model of a structure is found to be a viable alternative in this regard. An adaptive moving least squares method (MLSM) based RSM in the MCS framework is explored in the present study for efficient SFA of existing structures. In doing so, the repetition of seismic intensity for complete generation of fragility curve is avoided by including this as one of the predictors in the response estimate model. The proposed procedure is elucidated by considering a non-linear SDOF system and an existing reinforced concrete frame considered to be located in the Guwahati City of the Northeast region of India. The fragility results are obtained by the usual least squares based and the proposed MLSM based RSM and compared with that of obtained by the direct MCS technique to study the effectiveness of the proposed approach.

Computing input energy response of MDOF systems to actual ground motions based on modal contributions

  • Ucar, Taner
    • Earthquakes and Structures
    • /
    • v.18 no.2
    • /
    • pp.263-273
    • /
    • 2020
  • The use of energy concepts in seismic analysis and design of structures requires the understanding of the input energy response of multi-degree-of-freedom (MDOF) systems subjected to strong ground motions. For design purposes and non-time consuming analysis, however, it would be beneficial to associate the input energy response of MDOF systems with those of single-degree-of-freedom (SDOF) systems. In this paper, the theoretical formulation of energy input to MDOF systems is developed on the basis that only a particular portion of the total mass distributed among floor levels is effective in the nth-mode response. The input energy response histories of several reinforced concrete frames subjected to a set of eleven horizontal acceleration histories selected from actual recorded events and scaled in time domain are obtained. The contribution of the fundamental mode to the total input energy response of MDOF frames is demonstrated both graphically and numerically. The input energy of the fundamental mode is found to be a good indicator of the total energy input to two-dimensional regular MDOF structures. The numerical results computed by the proposed formulation are verified with relative input energy time histories directly computed from linear time history analysis. Finally, the elastic input energies are compared with those computed from time history analysis of nonlinear MDOF systems.

Design of Innovative SMA PR Connections Between Steel Beams and Composite Columns (강재보와 합성기둥에 사용된 새로운 반강접 접합부의 설계)

  • Son, Hong Min;Leon, Roberto T.;Hu, Jong Wan
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.1
    • /
    • pp.28-36
    • /
    • 2014
  • This study describes the development of innovative connections between steel beams and concrete-filled tube columns that utilize a combination of low-carbon steel and super-elastic shape memory alloy components. The intent is to combine the recentering behavior provided by the shape memory alloys to reduce building damage and residual drift after a major earthquake with the excellent energy dissipation of the low-carbon steel. The analysis and design of structures requires that simple yet accurate models for the connection behavior be developed. The development of a simplified 2D spring connection model for cyclic loads from advanced 3D FE monotonic studies is described. The implementation of those models into non-linear frame analyses indicates hat the recentering systems will provide substantial benefits for smaller earthquakes and superior performance to all-welded moment frames for large earthquakes.

An optimum design of on-bottom stability of offshore pipelines on soft clay

  • Yu, Su Young;Choi, Han Suk;Lee, Seung Keon;Do, Chang Ho;Kim, Do Kyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.4
    • /
    • pp.598-613
    • /
    • 2013
  • This paper deals with the dynamic effect of pipeline installation and embedment for the on-bottom stability design of offshore pipelines on soft clay. On-bottom stability analysis of offshore pipelines on soft clay by DNV-RP-F109 (DNV, 2010) results in very unreasonable pipe embedment and concrete coating thickness. Thus, a new procedure of the on-bottom stability analysis was established considering dynamic effects of pipeline installation and pipe-soil interaction at touchdown point (TDP). This analysis procedure is composed of three steps: global pipeline installation analysis, local analysis at TDP, modified on-bottom stability analysis using DNV-RP-F109. Data obtained from the dynamic pipeline installation analysis were utilized for the finite element analysis (FEA) of the pipeline embedment using the non-linear soil property. From the analysis results of the proposed procedure, an optimum design of on-bottom stability of offshore pipeline on soft clay can be achieved. This procedure and result will be useful to assess the on-bottom stability analysis of offshore pipelines on soft clay. The analysis results were justified by an offshore field inspection.

A method to evaluate the frequencies of free transversal vibrations in self-anchored cable-stayed bridges

  • Monaco, Pietro;Fiore, Alessandra
    • Computers and Concrete
    • /
    • v.2 no.2
    • /
    • pp.125-146
    • /
    • 2005
  • The objective of this paper is setting out, for a cable-stayed bridge with a curtain suspension, a method to determine the modes of vibration of the structure. The system of differential equations governing the vibrations of the bridge, derived by means of a variational formulation in a nonlinear field, is reported in Appendix C. The whole analysis results from the application of Hamilton's principle, using the expressions of potential and kinetic energies and of the virtual work made by viscous damping forces of the various parts of the bridge (Monaco and Fiore 2003). This paper focuses on the equation concerning the transversal motion of the girder of the cable-stayed bridge and in particular on its final form obtained, restrictedly to the linear case, neglecting some quantities affecting the solution in a non-remarkable way. In the hypotheses of normal mode of vibration and of steady-state, we propose the resolution of this equation by a particular method based on a numerical approach. Respecting the boundary conditions, we derive, for each mode of vibration, the corresponding frequency, both natural and damped, the shape-function of the girder axis and the exponential function governing the variability of motion amplitude in time. Finally the results so obtained are compared with those deriving from the dynamic analysis performed by a finite elements calculation program.

A Study on 3D CAD/NFEA modeling Interface of A-Type RC Bridge Pylon (A-Type RC 주탑의 3차원 정보모델과 비선형 구조해석모델 생성을 위한 인터페이스 연구)

  • Eom, Ji-Young;Choi, Saem-Lee;Lee, Heon-Min;Shin, Hyun-Mock
    • Journal of KIBIM
    • /
    • v.4 no.3
    • /
    • pp.1-9
    • /
    • 2014
  • As BIM application continues to increase in civil engineering, in this study, 3D information model for RC(Reinforced Concrete) bridge pylon was developed and verified its effectiveness at the structural-design stage. To define 3D information model of RC A-Type pylon, characteristics of pylon were analyzed and 3D model structure was constructed. The 3D information model, one of the core product of BIM, manages all information generated during all life-cycle of a structure and consequently maximizes the efficiency of utilizing information. Also, this study proposes interface module between input data in structural analysis and 3D model of RC pylon. The module can create the input data for non-linear structural analysis. It is essential to study on method of developing 3D information model and propose a structural analysis model by utilizing 3D model for the effective use of BIM techniques in construction industry. The results of this study can be used as the base data for developing the 3D information model of RC pylon in the structural analysis field.

Design thermal loading for composite bridges in tropical region

  • Au, F.T.K.;Cheung, S.K.;Tham, L.G.
    • Steel and Composite Structures
    • /
    • v.2 no.6
    • /
    • pp.441-460
    • /
    • 2002
  • In the design of bridges, it is important to consider the thermal stresses induced by the non-linear temperature distribution as well as the variation of effective temperature in the bridge deck. To cope with this, design temperature profiles are provided by design codes, which are normally based on extensive research work. This paper presents the results of a comprehensive investigation on the thermal behaviour of bridges in Hong Kong with special emphasis on composite bridges. The temperature distribution in bridges depends primarily on the solar radiation, ambient air temperature and wind speed in the vicinity. Apart from data of the meteorological factors, good estimates of the thermal properties of material and the film coefficients are necessary for the prediction of temperature distribution. The design temperature profiles for various types of composite bridge deck with bituminous surfacing and concrete slab of different thicknesses are proposed. The factors affecting the design effective temperature are also reviewed and suitable values for Hong Kong are proposed. Results are compared with recommendations of the current local code. The method facilitates the development of site-specific temperature profiles for code documents, and it can also be applied to create zoning maps for temperature loading for large countries where there are great climatic differences.

Strength Demand of Hysteretic Energy Dissipating Devices Alternative to Coupling Beams in High-Rise Buildings

  • Choi, Kyung-Suk;Kim, Hyung-Joon
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.2
    • /
    • pp.107-120
    • /
    • 2014
  • A Reinforced concrete (RC) shear wall system with coupling beams has been known as one of the most promising structural systems for high-rise buildings. However, significantly large flexural and/or shear stress demands induced in the coupling beams require special reinforcement details to avoid their undesirable brittle failure. In order to solve this problem, one of promising candidates is frictional hysteretic energy dissipating devices (HEDDs) as an alternative to the coupling beams. The introduction of frictional HEDDs into a RC shear wall system increases energy dissipation capacity and maintains the frame action after their yielding. This paper investigates the strength demands (specifically yield strength levels) with a maximum allowable ductility of frictional HEDDs based on comparative non-linear time-history analyses of a prototype RC shear wall system with traditional RC coupling beams and frictional HEDDs. Analysis results show that the RC shear wall systems coupled by frictional HEDDs with more than 50% yield strength of the RC coupling beams present better seismic performance compared to the RC shear wall systems with traditional RC coupling beams. This is due to the increased seismic energy dissipation capacity of the frictional HEDD. Also, it is found from the analysis results that the maximum allowable ductility demand of a frictional HEDD should increase as its yield strength decreases.