• Title/Summary/Keyword: non-linear concrete

Search Result 392, Processing Time 0.125 seconds

Ground Improvement under Ship Collision Protection of Myodo-Gangyang Suspension Bridge Concerning of Sedimental Condition in Gyangyang Bay (광양만 퇴적이력을 고려한 묘도-광양간 현수교 충돌방지공 하부 지반보강)

  • Chang, Yong-Chai;Yoon, Tae-Seob;Kim, Kyung-Taek
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.660-671
    • /
    • 2008
  • The suspension bridge between Myodo and Gwangyang is located in the main navigation channel to Gwangyang Harbor. So, there is need for the collision protection against large vessels. As ship collision protection, artificial island with concrete block quay wall is planned. The risk analysis and non-linear numerical analysis are introduced to consider the ship collision effects. In the Gwangyang bay area, there are some different sedimental conditions in clayey stratums. For a desirable design, we classify into four zones and 2 layers in each zone, and then determine suitable soil properties considering these zones. As a ground improvement under artificial island, DCM and SCP methods are Planned.

  • PDF

RC beams retrofitted using external bars with additional anchorages-a finite element study

  • Vasudevan, G.;Kothandaraman, S.
    • Computers and Concrete
    • /
    • v.16 no.3
    • /
    • pp.415-428
    • /
    • 2015
  • Study on flexural retrofitting of RC beams using external bars with additional intermediate anchorages at soffit is reported in this paper. Effects of varying number of anchorages in the external bars at soffit were studied by finite element analysis using ANSYS 12.0 software. The results were also compared with available experimental results for beam with only two end anchorages. Two sets of reference and retrofitted beam specimens with two, three, four and five anchorages were analysed and the results are reported. FE modeling and non-linear analysis was carried out by discrete reinforcement modeling using Solid65, Solid45 and Link8 elements. Combin39 spring elements were used for modeling the frictional contact between the soffit and the external bars. The beam specimens were subjected to four-point bending and incremental loading was applied till failure. The entire process of modeling, application of incremental loading and generation of output in text and graphical format were carried out using ANSYS Parametric Design Language.

Structural behaviors of sustainable hybrid columns under compression and flexure

  • Wu, Xiang-Guo;Hu, Qiong;Zou, Ruofei;Zhao, Xinyu;Yu, Qun
    • Structural Engineering and Mechanics
    • /
    • v.52 no.5
    • /
    • pp.857-873
    • /
    • 2014
  • Structural behaviors of a sustainable hybrid column with the ultra high performance cementitious composites (UHPCC) permanent form under compression and flexure were studied. Critical state and failure stage characters are analyzed for large and small eccentricity cases. A simplified theoretical model is proposed for engineering designs and unified formulas for loading capacity of the hybrid column under compression and flexure loads are derived, including axial force and moment. Non-linear numerical analysis is carried out to verify the theoretical predictions. The theoretical predictions agree well with the numerical results which are verified by the short hybrid column tests recursively. Compared with the traditional reinforced concrete (RC) column, the loading capacity of the sustainable hybrid column is improved significantly due to UHPCC confinements.

Assessment of seismic strengthening solutions for existing low-rise RC buildings in Nepal

  • Chaulagain, Hemchandra;Rodrigues, Hugo;Spacone, Enrico;Varum, Humberto
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.511-539
    • /
    • 2015
  • The main objective of this study is to analytically investigate the effectiveness of different strengthening solutions in upgrading the seismic performance of existing reinforced concrete (RC) buildings in Nepal. For this, four building models with different structural configurations and detailing were considered. Three possible rehabilitation solutions were studied, namely: (a) RC shear wall, (b) steel bracing, and (c) RC jacketing for all of the studied buildings. A numerical analysis was conducted with adaptive pushover and dynamic time history analysis. Seismic performance enhancement of the studied buildings was evaluated in terms of demand capacity ratio of the RC elements, capacity curve, inter-storey drift, energy dissipation capacity and moment curvature demand of the structures. Finally, the seismic safety assessment was performed based on standard drift limits, showing that retrofitting solutions significantly improved the seismic performance of existing buildings in Nepal.

Simple equations for the calculation of the temperature within the cross-section of slim floor beams under ISO Fire

  • Zaharia, R.;Franssen, J.M.
    • Steel and Composite Structures
    • /
    • v.13 no.2
    • /
    • pp.171-185
    • /
    • 2012
  • The calculation of fire resistance for a composite structural element comprises the calculation of the temperature within its cross-section and of the load bearing capacity, considering the evolution of the steel and concrete mechanical properties, function of the temperature. The paper proposes a method to calculate the bending capacity under ISO fire, for Slim Floor systems using asymmetric steel beams, with a wider lower flange or a narrow upper flange welded onto a half hot-rolled profile. The temperatures in the cross-section are evaluated by means of empirical formulas determined through a parametrical analysis, performed with the special purpose non-linear finite element program SAFIR. Considering these formulas, the bending capacity may be calculated, using an analytical approach to determine the plastic bending moment, for different fire resistance demands. The results obtained with this simplified method are validated through numerical analysis.

The deformable multilaminate for predicting the Elasto-Plastic behavior of rocks

  • Haeri, Hadi;Sarfarazi, V.
    • Computers and Concrete
    • /
    • v.18 no.2
    • /
    • pp.201-214
    • /
    • 2016
  • In this paper, a multilaminate based model have been developed and presented to predict the strain hardening behavior of rock. In this multilaminate model, the stress-strain behavior of a material is obtained by integrating the mechanical response of an infinite number of predefined oriented planes passing through a material point. Essential features such as the variable deformations hypothesis and multilaminate model are discussed. The methodology to be discussed here is modeling of strains on the 13 laminates passing through a point in each loading step. Upon the presented methodology, more attention has been given to hardening in non-linear behaviour of rock in going from the peak to residual strengths. The predictions of the derived stress-strain model are compared to experimental results for marble, sandstone and dense Cambria sand. The comparisons demonstrate the ability of this model to reproduce accurately the mechanical behavior of rocks.

Collapse behaviour in reciprocal frame structures

  • Garavaglia, Elsa;Pizzigoni, Attilio;Sgambi, Luca;Basso, Noemi
    • Structural Engineering and Mechanics
    • /
    • v.46 no.4
    • /
    • pp.533-547
    • /
    • 2013
  • "Reciprocal Frame" refers to a self-supporting grid structure used both for floor and roof. Using Finite Element Methods for non-linear solid mechanics and frictional-contact, this paper intends to analytically and numerically investigate the collapse behaviour of a reciprocal frame structure made of fibre-reinforced concrete. Considering a simple 3-beam structure, it has been investigated using a solid finite element model. Once defined the collapse behaviour of the simple structure, the analysis has been generalized using a concentrated plasticity finite element method. Results provided will be useful for studying generic reciprocal frame structures with several beams.

Effective CFRP retrofit strategy for flexural deficient RC beams

  • Banjara, Nawal Kishor;Ramanjaneyulu, K.
    • Structural Engineering and Mechanics
    • /
    • v.69 no.2
    • /
    • pp.163-175
    • /
    • 2019
  • Structural deterioration arises due to aging, environmental effects, deficiencies during design and construction phase, and overloading. Experimental and numerical investigations are carried out in this study to evaluate the performance of control and flexural deficient reinforced concrete (RC) beams under monotonic loading. Three levels of flexural deficiency are considered in this study. After confirming load carrying capacities of control and flexural deficient beams, the flexural deficient RC beams are strengthened with carbon fibre reinforced polymer (CFRP) fabric. CFRP strengthened RC beams are tested under monotonic loading and compared with the performance of control specimen. Further, non-linear finite element analyses are also carried out to evaluate the flexural performance of control, deficient and CFRP strengthened flexural deficient RC beams. There is good correlation between results of experimental and numerical investigations. Numerical approach presented in this study can be adopted for assessing the adequacy of CFRP retrofit measure.

LQG modeling and GA control of structures subjected to earthquakes

  • Chen, ZY;Jiang, Rong;Wang, Ruei-Yuan;Chen, Timothy
    • Earthquakes and Structures
    • /
    • v.22 no.4
    • /
    • pp.421-430
    • /
    • 2022
  • This paper addresses the stochastic control problem of robots within the framework of parameter uncertainty and uncertain noise covariance. First of all, an open circle deterministic trajectory optimization issue is explained without knowing the unequivocal type of the dynamical framework. Then, a Linear Quadratic Gaussian (LQG) controller is intended for the ostensible trajectory-dependent linearized framework, to such an extent that robust hereditary NN robotic controller made out of the Kalman filter and the fuzzy controller is blended to ensure the asymptotic stability of the non-continuous controlled frameworks. Applicability and performance of the proposed algorithm shown through simulation results in the complex systems which are demonstrate the feasible to improve the performance by the proposed approach.

The strongest control of thermophoresis coefficient on nanoparticle profile at intermediate gaps: A spinning sphere

  • Sharif, Humaira;Naeem, Muhammad Nawaz;Khadimallah, Mohamed A.;Ayed, Hamdi;Hussain, Muzamal;Alshoaibi, Adil
    • Computers and Concrete
    • /
    • v.29 no.3
    • /
    • pp.201-207
    • /
    • 2022
  • The evaluation of velocity profile for large values of buoyancy parameter and Bioconvected Rayleigh number is examined. The non-linear problem has been tackled numerically by shooting technique. Nanofluid temperature and nanoparticle concentration slightly elevates for increasing values of thermophoresis coefficient. Thickness of thermal boundary layer is significantly increased with thermophoresis coefficient whereas thickness of concentration boundary layer is more slightly enhanced. The response of temperature and nanoparticles concentration is observed due to change in Brownian motion parameter. As Brownian motion parameter increased temperature distribution is slightly enhanced. The reverse behavior is observed in case of nanoparticles concentration. Comparison of numerical technique with the extant literature is made and an acceptable agreement is attained.