Browse > Article
http://dx.doi.org/10.12989/cac.2022.29.3.201

The strongest control of thermophoresis coefficient on nanoparticle profile at intermediate gaps: A spinning sphere  

Sharif, Humaira (Department of Mathematics, Govt. College University Faisalabad)
Naeem, Muhammad Nawaz (Department of Mathematics, Govt. College University Faisalabad)
Khadimallah, Mohamed A. (Civil Engineering Department, College of Engineering, Prince Sattam Bin Abdulaziz University)
Ayed, Hamdi (Department of Civil Engineering, College of Engineering, King Khalid University)
Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad)
Alshoaibi, Adil (Department of Physics, College of Science, King Faisal University)
Publication Information
Computers and Concrete / v.29, no.3, 2022 , pp. 201-207 More about this Journal
Abstract
The evaluation of velocity profile for large values of buoyancy parameter and Bioconvected Rayleigh number is examined. The non-linear problem has been tackled numerically by shooting technique. Nanofluid temperature and nanoparticle concentration slightly elevates for increasing values of thermophoresis coefficient. Thickness of thermal boundary layer is significantly increased with thermophoresis coefficient whereas thickness of concentration boundary layer is more slightly enhanced. The response of temperature and nanoparticles concentration is observed due to change in Brownian motion parameter. As Brownian motion parameter increased temperature distribution is slightly enhanced. The reverse behavior is observed in case of nanoparticles concentration. Comparison of numerical technique with the extant literature is made and an acceptable agreement is attained.
Keywords
Bioconvected Rayleigh number; nanoparticle; numerical technique; shooting technique; thermophoresis coefficient;
Citations & Related Records
Times Cited By KSCI : 18  (Citation Analysis)
연도 인용수 순위
1 Civalek, O. (2017), "Free vibration of carbon nanotubes reinforced (CNTR) and functionally graded shells and plates based on FSDT via discrete singular convolution method", Compos. Part B Eng., 111, 45-59. https://doi.org/10.1016/j.compositesb.2016.11.030.   DOI
2 Derakhshandeh, J.F. and Alam, M.M. (2020), "Reynolds number effect on the flow past two tandem cylinders", Wind Struct., 30(5), 475-483. https://doi.org/10.12989/was.2020.30.5.475.   DOI
3 Golabchi, H., Kolahchi, R. and Bidgoli, M.R. (2018), "Vibration and instability analysis of pipes reinforced by SiO2 nanoparticles considering agglomeration effects", Comput. Concrete, 21(4), 431-440. https://doi.org/10.12989/cac.2018.21.4.431.   DOI
4 Imtiaz, M., Hayat, T. and Alsaedi, A. (2016), "Mixed convection flow of Casson nanofluid over a stretching cylinder with convective boundary conditions", Adv. Powder Tech., 27(5), 2245-2256. https://doi.org/10.1016/j.apt.2016.08.011.   DOI
5 Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv. Nano Res., 7, 265-275. http://doi.org/10.12989/anr.2019.7.4.265.   DOI
6 Bilouei, B.S., Kolahchi, R. and Bidgoli, M.R. (2016), "Buckling of concrete columns retrofitted with Nano-Fiber Reinforced Polymer (NFRP)", Comput. Concrete, 18(5), 1053-1063. https://doi.org/10.12989/cac.2016.18.6.1053.   DOI
7 Chamkha, A. (2010), "Effects of thermal stratification on flow and heat transfer due to a stretching cylinder with uniform suction/injection", Int. J. Ener. Tech., 2(4), 1-7.   DOI
8 Ishak, A., Nazar, R. and Pop, I. (2008), "Uniform suction/blowing effect on flow and heat transfer due to a stretching cylinder", Appl. Math. Model., 32(10), 2059-2066. https://doi.org/10.1016/j.apm.2007.06.036.   DOI
9 Chen, J., Zhuang, Y., Fang, H., Liu, W., Zhu, L. and Fan, Z. (2019a), "Energy absorption of foam-filled lattice composite cylinders under lateral compressive loading", Steel Compos. Struct., 31(2), 133-148. https://doi.org/10.12989/scs.2019.31.2.133.   DOI
10 Chen, W., Ji, C., Alam, M.M. and Xu, D. (2019b), "Flow-induced vibrations of three circular cylinders in an equilateral triangular arrangement subjected to cross-flow", Wind Struct., 29(1), 43-53. https://doi.org/10.12989/was.2019.29.1.043.   DOI
11 Akgoz, B. and Civalek, O. (2011), "Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations", Steel Compos. Struct., 11(5), 403-421. https://doi.org/10.12989/scs.2011.11.5.403.   DOI
12 Saffman, P.G. (1962), "On the stability of laminar flow of a dusty gas", J. Fluid Mech., 13, 120-128. https://doi.org/10.1017/S0022112062000555.   DOI
13 Loghman, A., Arani, A.G. and Barzoki, A.A.M. (2017), "Nonlinear stability of non-axisymmetric functionally graded reinforced nano composite microplates", Comput. Concrete, 19(6), 677-687. https://doi.org/10.12989/cac.2017.19.6.677.   DOI
14 Beg, O.A., Mabood, F. and Islam, M.N. (2015), "Homotopy simulation of nonlinear unsteady rotating nanofluid flow from a spinning body", Int. J. Eng. Math., 2015, 1-15. http://doi.org/10.1155/2015/272079.   DOI
15 Baaskaran, N., Ponappa, K. and Shankar, S. (2018), "Assessment of dynamic crushing and energy absorption characteristics of thin-walled cylinders due to axial and oblique impact load", Steel Compos. Struct., 28(2), 179-194. https://doi.org/10.12989/scs.2018.28.2.179.   DOI
16 Batou, B., Nebab, M., Bennai, R., Atmane, H.A., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699-716. https://doi.org/10.12989/scs.2019.33.5.699.   DOI
17 Abdulrazzaq, M.A., Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020), "Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory", Steel Compos. Struct., 35(1), 147-57. https://doi.org/10.12989/scs.2020.35.1.147.   DOI
18 Agranat, V.M. (1988), "Effect of pressure gradient on friction and heat transfer in a dusty boundary layer", Fluid Dyn., 23, 729-732. http://doi.org/10.1007/BF02614150.   DOI
19 Malik, M.Y., Hussain, A., Salahuddin, T., Awais, M., Bilal, S. and Khan, F. (2016), "Flow of Sisko fluid over a stretching cylinder and heat transfer with viscous dissipation and variable thermal conductivity: a numerical study", AIP Adv., 6(4), 045118. https://doi.org/10.1063/1.4948458.   DOI
20 Rasekh, A., Ganji, D.D., Tavakoli, S., Ehsani, H. and Naeejee, S. (2014), "MHD flow and heat transfer of dusty fluid over a stretching hollow cylinder with a convective boundary conditions", Heat Trans. Asian Res., 43(3), 221-232. https://doi.org/10.1002/htj.21073.   DOI
21 Malik, M.Y., Naseer, M., Nadeem, S. and Rehman, A. (2013), "The boundary layer flow of Casson nanofluid over an exponentially stretching cylinder", Appl Nanosci, 4, 869-873. https://doi.org/10.1007/s 13204-013-0267-0.   DOI
22 Mousavi, M., Mohammadimehr, M. and Rostami, R. (2019), "Analytical solution for buckling analysis of micro sandwich hollow circular plate", Comput. Concrete, 24(3), 185-192. https://doi.org/10.12989/cac.2019.24.3.185.   DOI
23 Mousavi, M., Mohammadimehr, M. and Rostami, R. (2019), "Analytical solution for buckling analysis of micro sandwich hollow circular plate", Comput. Concrete, 24(3), 185-192. https://doi.org/10.12989/cac.2019.24.3.185.   DOI
24 Naseer, M., Malik, M.Y., Nadeem, S. and Rehman, A. (2014), "The boundary layer flow of hyperbolic tangent fluid over a vertical exponentially stretching cylinder", Alexandria Eng. J., 53, 747-750. https://doi.org/10.1016/j.aej.2014.05.001.   DOI
25 Khan, M. and Malik, R. (2015), "Forced convective heat transfer to Sisko fluid flow past a stretching cylinder", AIP Adv., 5(12), 127202. http://doi.org/10.1063/1.4937346.   DOI
26 Rebhi, A.D. (2010), "On boundary layer flow of dusty gas from a horizontal circular cylinder", Brazil J. Chem. Eng., 27(4), 653-662. http://doi.org/10.1590/S0104-66322010000400017.   DOI
27 Rehman, A. (2015), "Boundary layer flow and heat transfer of micropolar fluid over a vertical exponentially stretching cylinder", Appl. Comput. Math, 4(6), 424-430. http://doi.org/10.11648/j.acm.20150406.15.   DOI
28 Mahdy, A. (2015), "Heat transfer and flow of a Casson fluid due to a stretching cylinder with the soret and dufour effects", J. Eng. Phys. Therm., 88(4), 928-936. https://doi.org/10.1007/s10891-015-1267-6.   DOI
29 Iqbal, W., Naeem, M.N. and Jalil, M. (2019), "Numerical analysis of Williamson fluid flow along an exponentially stretching cylinder". AIP Adv., 9(5), 055118, http://doi.org/10.1063/1.5092737.   DOI
30 Ishak, A. and Nazar, R. (2009), "Laminar boundary layer flow along a stretching cylinder", Eur. J. Sci. Res., 36(1), 22-29.
31 Sayin, E. and Calayir, Y. (2015), "Comparison of linear and nonlinear earthquake response of masonry walls", Comput. Concrete, 16(1), 17-35. https://doi.org/10.12989/cac.2015.16.1.017.   DOI
32 Shadravan, S., Ramseyer, C.C. and Floyd, R.W. (2019), "Comparison of structural foam sheathing and oriented strand board panels of shear walls under lateral load", Adv. Comput. Des., 4(3), 251-272. https://doi.org/10.12989/acd.2019.4.3.251.   DOI
33 Wang, C.Y. and Ng, C.O. (2011), "Slip flow due to a stretching cylinder", Int. J. Non-Lin. Mech., 46, 1191-1194. https://doi.org/10.1016/j.ijnonlinmec.2011.05.0.   DOI
34 Zamani, A., Kolahchi, R. and Bidgoli, M.R. (2017), "Seismic response of smart nanocomposite cylindrical shell conveying fluid flow using HDQ-Newmark methods", Comput. Concrete, 20(6), 671-682. https://doi.org/10.12989/cac.2017.20.6.671.   DOI
35 Wang, C.Y. (1988), "Fluid flow due to a stretching cylinder", Phys. Fluid., 31, 466-468. https://doi.org/10.1063/1.866827.   DOI
36 Chakrabarti, K.M. (1974), "Note on Boundary layer in a dusty gas", AIAA, 12, 1136-1137. http://doi.org/10.2514/3.49427.   DOI
37 Konch, J. and Hazarika, G.C. (2017), "Unsteady Hydro magnetic flow of dusty fluid over a stretching cylinder with variable viscosity and thermal conductivity", Int. J. Adv. Sci. Tech., 99, 57-70. http://doi.org/10.14257/ijast.2017.99.05.   DOI
38 Lal, A. and Markad, K. (2018), "Deflection and stress behaviour of multi-walled carbon nanotube reinforced laminated composite beams", Comput. Concrete, 22(6), 501-514. https://doi.org/10.12989/cac.2018.22.6.501.   DOI
39 Salah, F., Boucham, B., Bourada, F., Benzair, A., Bousahla, A.A. and Tounsi, A. (2019), "Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model", Steel Compos. Struct., 33(6), 805-822. https://doi.org/10.12989/scs.2019.33.6.805.   DOI
40 Salahuddin, T., Malik, M.Y., Hussain, A., Awais, M. and Bilal, S. (2017), "Mixed convection boundary layer flow of Williamson fluid with slip conditions over a stretching cylinder by using Keller-box method", Int. J. Nonlinear Sci. Numer. Simul., 18(1), 9-17. https://doi.org/10.1515/ijnsns.2015.0090.   DOI