• Title/Summary/Keyword: non-invasive measuring

Search Result 86, Processing Time 0.025 seconds

Invasive and non-invasive methods for estimating the optical properties of tissue at laser wavelengths (레이저 파장에서의 생체 침습적 및 비침습적 광학계수 측정 방법)

  • Yoon, Gil-Won
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.12
    • /
    • pp.147-150
    • /
    • 1994
  • To predict light propagation in biological tissues irradiated by laser, the optical properties such as absorption and scattering coefficients are required. There have been various techniques for measuring these coefficients. One method requires tissue samples, often a slab of thin tissue, is invasive. On the other hand, non-invasive method usually measures back-scattered light from a subject with no physical intervent ions. Advantages and disvantages of using different methods are investigated. A careful attention should be made in order to select the best method for a given experimental condition since, even either for invasive or non-invasive method, accuracy is subject to governing models and sample preparations.

  • PDF

A Study on the circuit design and measurement method for the measurement of active points on skin (피부 활성점 측정을 위한 회로설계 및 측정방법연구)

  • Kim, Min Soo;Cho, Young Chang
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.713-718
    • /
    • 2020
  • The method of measuring skin active points is a technique for obtaining a lot of biometric information because it is measured with convenience, low cost and non-invasive methods. In this paper, we used in a three electrode measure method that has the advantage of measuring the impedance of the APs under the skin. The impedance measuring method is well illustrated by a simple model of an equivalent electrical circuit that correlates well with experimental results. The characteristic frequencies of APs are about 15-30HZ higher than that of surrounding skin and the values of measured reactance are about 35-77KΩ smaller. This technology analyzed accurately and objectively the reactance and characteristic frequency of APs and the surrounding skin using a non-invasive measuring system.

Feasibility of Using the Clamp Meter in Measuring X-Ray Tube Current

  • Kim, Sung-Chul
    • International Journal of Contents
    • /
    • v.9 no.1
    • /
    • pp.38-41
    • /
    • 2013
  • The clamp meter maintains electric safety as a non-invasive method while measuring the absolute value of tube current with it has been recently developed for an X-ray high-tension cable. Especially this can show high accuracy at short X-ray exposure time. Considering such a condition, this study is to evaluate the feasibility of a clamp meter in measuring X-ray tube current by taking the measurements and comparing with those of the Dynalyzer III which has been considered as a standard measuring device. From measuring the tube current accuracy depending on changes in tube voltage and exposure time, the clamp meter showed higher accuracy rate which was -1.3~4.2% difference. Thus clamp meter can be used for clinical radiologists who are not familiar electric circuit to manage X-ray devices easily and correctly in the future.

Validation of Non-invasive Method for Electrocardiogram Recording in Mouse using Lead II

  • Kim, Myung Jun;Lim, Ji Eun;Oh, Bermseok
    • Biomedical Science Letters
    • /
    • v.21 no.3
    • /
    • pp.135-143
    • /
    • 2015
  • Electrocardiogram measures the electric impulses generated by the heart during its cycle. Recently genome-wide association studies on electrocardiogram traits revealed many relevant genetic loci. Therefore, these findings need to be validated and investigated to determine the underlying mechanisms using mouse models. Invasive radiotelemetry has been widely used to record the electrocardiogram in mice because it has several advantages over non-invasive measurements. However, radiotelemetry is expensive and requires complicated surgery. On the other hand, a non-invasive method using 3 electrodes (one for earth) for lead II is easy to establish and allows for rapid measurement. In this study, eleven mice were measured with this non-invasive method and no statistical difference among them was found in any ECG measurements. In addition, repeat measurement in the same mouse was performed in 9 sets of experiment and the results indicated that non-invasive method was reliable for reproducibility. Further it was shown that measurements for 1, 5, 10, and 15 minutes were not different so that a short recording such as 5 minutes was enough to estimate the ECG values including heart rate. Further this method was validated by measuring the ECG of Balb/c and FVB that were previously shown to differ in ECG values by radiotelemetry. Significant differences were found in heart rate, PR interval and corrected QT interval between these mouse strains. This study partially proved that non-invasive method also could provide the accuracy and reproducibility. Based on these results, the non-invasive ECG recordings of lead II is recommended as a useful method for quick test in mouse model.

The study of non-contact/non-invasive pulse analyzing system using Optical Coherence Tomography (OCT) for oriental pulse diagnosis (비접촉식 광생체단층촬영 기술을 이용한 맥진 연구 -맥의 빠르기, 크기 및 맥력을 중심으로-)

  • Na, Chang-Su;Youn, Dae-Hwan;Kim, Young-Sun;Lee, Chang-Ho;Jung, Woon-Sang;Kim, Jee-Hyun;Choi, Chan-Hun
    • Korean Journal of Acupuncture
    • /
    • v.26 no.2
    • /
    • pp.1-13
    • /
    • 2009
  • Objective: Optical Coherence Tomography (OCT) has emerged as an important optical imaging modality in non-invasive medical diagnostics. Hence, the aim of this study is to measure the similarity of the diagnosis by a traditional method using doctor's hand for feeling of pulse and by the non-contact/non-invasive pulse analyzing system using OCT on Chon(寸), Kwan(關), Chuk(尺). Method: Four korean medical doctors and the non-contact/non-invasive pulse analyzing system using OCT have measured the rapidity, the dimension, and the power of pulse waves of 25 volunteers. First, four korean medical doctors measured pulse waves of volunteers. During measuring, four doctors were separated from each other and so were volunteers. And then, the pulse waves of volunteers were measured by OCT. This was performed on the right Chon(寸), Kwan(關), Chuk(尺). Results: The study showed that the traditional method and the OCT based method had the 88% matches on the values of the slow and rapid pulse condition (遲數), 64% matches on the values of the small and big pulse condition(微細弱緩大[洪]), and 72% matches on the values of the weak and strong pulse condition(虛實). Conclusions: Based on the high similarities of the measurements of two approaches, we suggest that the OCT based pulse diagnosis method is useful for compensating the traditional method for the pulse diagnosis.

  • PDF

Blood Glucose Measurement Principles of Non-invasive Blood Glucose Meter: Focused on the Detection Methods of Blood Glucose (무채혈 혈당 측정기의 혈당 측정 원리: 혈당 검출방법 중심으로)

  • Ahn, Wonsik;Kim, Jin-Tae
    • Journal of Biomedical Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.114-127
    • /
    • 2012
  • Recent technical advancement allows noninvasive measurement of blood glucose. In this literature, we reviewed various noninvasive techniques for measuring glucose concentration. Optical or electrical methods have been investigated. Optical techniques include near-infrared spectroscopy, Raman spectroscopy, optical coherence technique, polarization, fluorescence, occlusion spectroscopy, and photoacoustic spectroscopy. Electrical methods include reverse iontophoresis, impedance spectroscopy, and electromagnetic sensing. Ultrasound, detection from breath, or fluid harvesting technique can be used to measure blood glucose level. Combination of various methods is also promising. Although there are many interesting and promising technologies and devices, there need further researches until a commercially available non-invasive glucometer is popular.

Implementation of Noninvasive Blood Pressure Measuring System for Home Health Care Using Oscillometric Method (오실로메트릭법을 적용한 홈헬스케어용 비침습적 혈압측정법의 구현)

  • Kang Seong-Chul;Jeon Gye-Rock;Jeong Do-Un
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.689-692
    • /
    • 2006
  • In this study, an implementation of a system for measuring more accurate blood pressure by non-invasive methods of oscillometric was performed to reduce errors and weaknesses of the existing invasive blood pressure measurement methods. The system is composed of pressure control, signal measurement and blood pressure signal processing units. To verify the validity of the system, tests of characteristics evaluations for pressure measurement unit, extraction of characteristic ratios for blood pressure estimation, blood pressure tracking by oscillometric method were performed. A group of five adult male was selected for the clinical test of the implemented system. The results of the oscillometric method in comparison with auscultatory method are that the maximum ratios of PAD of average, systolic and diastolic arterial pressure are 1.38%, 1.63% and 2.97% with SEP of 5.00, 3.72 and 4.34.

  • PDF

A Study on Implemetation of Non-invasive Blood Pressure (비침습적 혈압 측정 시스템 구현에 관한 연구)

  • 노영아;이종수;김영길
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.10a
    • /
    • pp.451-454
    • /
    • 2000
  • Invasive methode and Non-invasive methode are used in blood pressure measurement. The Invasive methode can Set the correct measured blood pressure but, it has patient feels uncomfortable. So most of cases use Non-invasive methode. The Oscillometric method is commonly apply to modem electric sphygmomanometer and using various algorithm. In this paper describe about a algorithm it control and to determinate the cuff pressure, and filtering that data for measure the blood pressure. The communicating with personal computer can pressure deflation is by Solenoid valve and it uses RS-232 system in packet communication. The main using algorithm for blood pressure measurements are maximum amplitude algorithm and oscillometric algorithm. MAA(maximum amplitude algorithm) has various measured oscillation it depend on patient's age, height, weight and arm circumference size. In this paper, 1 studied the various measured oscillation apply to characteristic ratio and can get the result of systolic blood pressure, diastolic blood pressure, mean blood pressure. It was not used same ratio to measuring oscillation. In the MAA(maximum amplitude algorithm), we hope for reduce the difference with the real blood pressure and the measured blood pressure, when it applied with various specific ratio.

  • PDF