• Title/Summary/Keyword: non-invasive detection

Search Result 148, Processing Time 0.022 seconds

The Present Status of Cell Tracking Methods in Animal Models Using Magnetic Resonance Imaging Technology

  • Kim, Daehong;Hong, Kwan Soo;Song, Jihwan
    • Molecules and Cells
    • /
    • v.23 no.2
    • /
    • pp.132-137
    • /
    • 2007
  • With the advance of stem cell transplantation research, in vivo cell tracking techniques have become increasingly important in recent years. Magnetic resonance imaging (MRI) may provide a unique tool for non-invasive tracking of transplanted cells. Since the initial findings on the stem cell migration by MRI several years ago, there have been numerous studies using various animal models, notably in heart or brain disease models. In order to develop more reliable and clinically applicable methodologies, multiple aspects should be taken into consideration. In this review, we will summarize the current status and future perspectives of in vivo cell tracking technologies using MRI. In particular, use of different MR contrast agents and their detection methods using MRI will be described in much detail. In addition, various cell labeling methods to increase the sensitivity of signals will be extensively discussed. We will also review several key experiments, in which MRI techniques were utilized to detect the presence and/or migration of transplanted stem cells in various animal models. Finally, we will discuss the current problems and future directions of cell tracking methods using MRI.

Recent Developments in Metal Oxide Gas Sensors for Breath Analysis (산화물 반도체를 이용한 최신 호기센서 기술 동향)

  • Yoon, Ji-Wook;Lee, Jong-Heun
    • Ceramist
    • /
    • v.22 no.1
    • /
    • pp.70-81
    • /
    • 2019
  • Breath analysis is rapidly evolving as a non-invasive disease recognition and diagnosis method. Metal oxide gas sensors are one of the most ideal platforms for realizing portable, hand-held breath analysis devices in the near future. This paper reviewed the recent developments in metal oxide gas sensors detecting exhaled biomarker gases such as nitric oxides, acetone, ammonia, hydrogen sulfide, and hydrocarbons. Emphasis was placed on strategies to tailor sensing materials/films capable of highly selective and sensitive detection of biomarker gases with negligible cross-response to ethanol, the major interfering breath gas. Specific examples were given to highlight the validity of the strategies, which include optimization of sensing temperature, doping additives, utilizing acid-base interaction, loading catalysts, and controlling gas reforming reaction. In addition, we briefly discussed the design and optimization method of gas sensor arrays for implementing the simultaneous assessment of multiple diseases. Breath analysis using high-performance metal oxide gas sensors/arrays will open new roads for point-of-care diagnosis of diseases such as asthma, diabetes, kidney dysfunction, halitosis, and lung cancer.

Clinical Usefulness of Helicobactor pylori Ag Stool Test (Immunochromatographic Assay) for Diagnosis of H. pylori Infection (Helicobacter pylori 감염진단에 있어 H. pylori Ag Stool 검사 (면역크로마토그라피법)의 임상적 유용성)

  • Seo, Seol
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.42 no.1
    • /
    • pp.38-45
    • /
    • 2010
  • The aim of this study was to assess the Clinical Usefulness of Helicobacter pylori Stool Antigen (HpSA) immunochromatographic assay for the diagnosis of H. pylori infection. In this study, we had compared HpSA-immunochromatographic assay with CLO test and UBT test. From a total of 140 patients (M:F=88:52) with upper endoscopy, biopsy specimens were obtained for CLO test. Stool specimens was collected from all patients and tested using a HpSA-immunochromatic assay. H. pylori infection status was defined as infected if the results of both CLO test and UBT test were positive. CLO test and UBT test findings showed that 92 patients were H. pylori positive and 48 patients were H. pylori negative. According to this definition, the sensitivity, specificity, and positive or negative predictive value (PPV, NPV) of HpSA-immunochromatographic assay were 97.8%, 100%, 100%, and 96%, respectively. Cross reactivity test of HpSA-immunochromatographic assay were performed with 10 enteric bacteria strains in fecal habitat, and there were no false positive reaction. We evaluated the usefulness of HpSA assay for eradication therapy with 10 of 92 H. pylori positive patients, positive results of them at pre-eradication therapy were converted to negative at post-eradication. The HpSA-immunochromatographic assay is a highly sensitive and specific non-invasive diagnostic method for detection of H. pylori infection, a useful diagnostic method for H. pylori in post eradication stage.

  • PDF

Actinometric Investigation of In-Situ Optical Emission Spectroscopy Data in SiO2 Plasma Etch

  • Kim, Boom-Soo;Hong, Sang-Jeen
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.3
    • /
    • pp.139-143
    • /
    • 2012
  • Optical emission spectroscopy (OES) is often used for real-time analysis of the plasma processes. OES has been suggested as a primary plasma process monitoring tool. It has the advantage of non-invasive in-situ monitoring capability but selecting the proper wavelengths for the analysis of OES data generally relies on empirically established methods. In this paper, we propose a practical method for the selection of OES wavelength peaks for the analysis of plasma etch process and this is done by investigating reactants and by-product gas species that reside in the plasma etch chamber. Wavelength selection criteria are based on the standard deviation and correlation coefficients. Moreover, chemical actinometry is employed for the normalization of the selected wavelengths. We also present the importance of chemical actinometry of OES data for quantitative analysis of plasma. Then, the suggested OES peak selection method is employed.. This method is used to find out the reason behind abnormal etching of PR erosion during a series of $SiO_2$ etch processes using the same recipe. From the experimental verification, we convinced that OES is not only capable for real-time detection of abnormal plasma process but it is also useful for the analysis of suspicious plasma behavior.

Noninvasive Detection of Specific Diagnostic Biomarkers for Atopic Dermatitis

  • Chang, Jeong Hyun
    • Biomedical Science Letters
    • /
    • v.25 no.1
    • /
    • pp.15-22
    • /
    • 2019
  • The diagnosis of atopic dermatitis (AD) includes a test that checks allergen-mediated skin reactions and a method of measuring the total IgE and allergen-specific IgE in blood. However, these test methods are performed directly on the patient, which cause some pain or discomfort. In addition, the skin response test or IgE may result in false negative in about 20% of patients. In the present study, to identify specific biomarkers, HaCaT cells were used as a human keratinocyte that make up the skin, were treated IL-4 and IL-13 for 24 hours to induce a situation similar to keratinocytes in AD patients. In the HaCaT cells, pro-inflammatory cytokine such as IL-5, IL-6, and MCP-1 were increased by IL-4 and IL-13 and skin barrier proteins was reduced by IL-4 and L-13. This results showed that a situation similar to the stratum corneum of an actual patient is induced in HaCaT cells. And then the secretions of Kallikrein (KLK) 5 and KLK7 protease were checked by enzyme-linked immunosorbent assay (ELISA). It was specifically increased by IL-4 and IL-13. This showed that AD-related protease can be detected at the protein level using keratinocytes that can be taken in a non-invasive manner and suggested the possibility of applying it to AD diagnosis.

Magnetic resonance angiography in assessment of anomalies of anterior cerebral artery in adults

  • Noha Abdelfattah Ahmed Madkour
    • Anatomy and Cell Biology
    • /
    • v.56 no.4
    • /
    • pp.469-473
    • /
    • 2023
  • Anomalies of anterior cerebral artery (ACA) include aplasia, hypoplasia and variations in number. Magnetic resonance angiography (MRA) is a non-invasive diagnostic technique for assessment of anomalies of cerebral arteries. The aim of the study was to determine the role of MRA in detection of variants of ACA in adults. This study is an observational retrospective study. This study included forty-nine adult cases (28 males and 21 females), mean age 48±12.9 SD with anomalies of ACA in MRA. Magnetic resonance imaging of the brain and MRA were done to all patients. Cerebral MRA and magnetic resonance images were evaluated for frequency and distribution of variants of anterior cerebral arteries, associated aneurysms and infarctions. Odds ratios (ORs) and relative risk were calculated to determine risk of occurrence of cerebral infarctions in patients with anomalies of ACA. Hypoplasia of ACA was the commonest anomaly of ACA (51% of cases). Risk of occurrence of cerebral infarctions was higher in cases with azygos variant (OR, 3.3; P=0.35) than in those with hypoplastic ACA (OR, 2; P=0.58). MRA was highly reliable in identification of different variants of ACA and concomitant vascular changes.

Performance Evaluation of YOLOv5s for Brain Hemorrhage Detection Using Computed Tomography Images (전산화단층영상 기반 뇌출혈 검출을 위한 YOLOv5s 성능 평가)

  • Kim, Sungmin;Lee, Seungwan
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.1
    • /
    • pp.25-34
    • /
    • 2022
  • Brain computed tomography (CT) is useful for brain lesion diagnosis, such as brain hemorrhage, due to non-invasive methodology, 3-dimensional image provision, low radiation dose. However, there has been numerous misdiagnosis owing to a lack of radiologist and heavy workload. Recently, object detection technologies based on artificial intelligence have been developed in order to overcome the limitations of traditional diagnosis. In this study, the applicability of a deep learning-based YOLOv5s model was evaluated for brain hemorrhage detection using brain CT images. Also, the effect of hyperparameters in the trained YOLOv5s model was analyzed. The YOLOv5s model consisted of backbone, neck and output modules. The trained model was able to detect a region of brain hemorrhage and provide the information of the region. The YOLOv5s model was trained with various activation functions, optimizer functions, loss functions and epochs, and the performance of the trained model was evaluated in terms of brain hemorrhage detection accuracy and training time. The results showed that the trained YOLOv5s model is able to provide a bounding box for a region of brain hemorrhage and the accuracy of the corresponding box. The performance of the YOLOv5s model was improved by using the mish activation function, the stochastic gradient descent (SGD) optimizer function and the completed intersection over union (CIoU) loss function. Also, the accuracy and training time of the YOLOv5s model increased with the number of epochs. Therefore, the YOLOv5s model is suitable for brain hemorrhage detection using brain CT images, and the performance of the model can be maximized by using appropriate hyperparameters.

Application of LATE-PCR to Detect Candida and Aspergillus Fungal Pathogens by a DNA Hybridization Assay

  • Gopal, Dhayaalini Bala;Lim, Chua Ang;Khaithir, Tzar Mohd Nizam;Santhanam, Jacinta
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.4
    • /
    • pp.358-364
    • /
    • 2017
  • Asymmetric PCR preferentially amplifies one DNA strand for use in DNA hybridization studies. Linear-After-The-Exponential-PCR (LATE-PCR) is an advanced asymmetric PCR method which uses innovatively designed primers at different concentrations. This study aimed to optimise LATE-PCR parameters to produce single-stranded DNA of Candida spp. and Aspergillus spp. for detection via probe hybridisation. The internal transcribed spacer (ITS) region was used to design limiting primer and excess primer for LATE-PCR. Primer annealing and melting temperature, difference of melting temperature between limiting and excess primer and concentration of primers were optimized. In order to confirm the presence of single-stranded DNA, the LATE-PCR product was hybridised with digoxigenin labeled complementary oligonucleotide probe specific for each fungal genus and detected using anti-digoxigenin antibody by dot blotting. Important parameters that determine the production of single-stranded DNA in a LATE-PCR reaction are difference of melting temperature between the limiting and excess primer of at least $5^{\circ}C$ and primer concentration ratio of excess primer to limiting primer at 20:1. LATE-PCR products of Candida albicans, Candida parapsilosis, Candida tropicalis and Aspergillus terreus at up to 1:100 dilution and after 1 h hybridization time, successfully hybridised to respective oligonucleotide probes with no cross reactivity observed between each fungal genus probe and non-target products. For Aspergillus fumigatus, LATE-PCR products were detected at 1:10 dilution and after overnight hybridisation. These results indicate high detection sensitivity for single-stranded DNA produced by LATE-PCR. In conclusion, this advancement of PCR may be utilised to detect fungal pathogens which can aid the diagnosis of invasive fungal disease.

Incidence and Mortality of Breast Cancer and their Relationship with the Human Development Index (HDI) in the World in 2012

  • Ghoncheh, Mahshid;Mirzaei, Maryam;Salehiniya, Hamid
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8439-8443
    • /
    • 2016
  • Background: Breast cancer is the most common malignancy in women worldwide and its incidence is generally increasing. In 2012, it was the second most common cancer in the world. It is necessary to obtain information on incidence and mortality for health planning. This study aimed to investigate the relationship between the human development index (HDI), and the incidence and mortality rates of breast cancer in the world in 2012. Materials and Methods: This ecologic study concerns incidence rate and standardized mortality rates of the cancer from GLOBOCAN in 2012, and HDI and its components extracted from the global bank site. Data were analyzed using correlation tests and regression with SPSS software (version 15). Results: Among the six regions of WHO, the highest breast cancer incidence rate (67.6) was observed in the PAHO, and the lowest incidence rate was 27.8 for SEARO. There was a direct, strong, and meaningful correlation between the standardized incidence rate and HDI (r=0.725, $p{\leq}0.001$). Pearson correlation test showed that there was a significant correlation between age-specific incidence rate (ASIR) and components of the HDI (life expectancy at birth, mean years of schooling, and GNP). On the other, a non-significant relationship was observed between ASIR and HDI overall (r=0.091, p=0.241). In total, a significant relationship was not found between age-specific mortality rate (ASMR) and components of HDI. Conclusions: Significant positive correlations exist between ASIR and components of the HDI. Socioeconomic status is directly related to the stage of the cancer and patient's survival. With increasing the incidence rate of the cancer, mortality rate from the cancer does not necessariloy increase. This may be due to more early detection and treatment in developed that developing countries. It is necessary to increase awareness of risk factors and early detection in the latter.

Comparative study of linear and cyclic forms of apoptosis-targeting peptide

  • Ha, Yeong Su;Soni, Nisarg;Huynh, Phuong Tu;Lee, Byung-Heon;An, Gwang Il;Yoo, Jeongsoo
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.2 no.2
    • /
    • pp.96-102
    • /
    • 2016
  • Apoptosis, a genetically determined process of programmed cell death, is considered a vital component of various processes including normal cell turnover, animal development, and tissue homeostasis. It has a crucial role in many medical disorders and hence the development of non-invasive imaging tool is highly demanded. Recently, we have developed a peptide-based radioactive probe (ApoPep-1) for apoptosis detection. In that work the potential of probe for apoptosis detection was verified, however in vivo stability of radiolabeled peptide was not enough to monitor apoptosis for extended period. In current study, we prepared cyclic ApoPep-1 peptides to improve the stability of origianl linear ApoPep-1 and carried out direct comparison studies in vitro and in vivo. A targeting efficacy of newly synthesized cyclic ApoPep-1 peptide for apoptosis was confirmed in acute myocardial infarct model.