Browse > Article
http://dx.doi.org/10.4313/TEEM.2012.13.3.139

Actinometric Investigation of In-Situ Optical Emission Spectroscopy Data in SiO2 Plasma Etch  

Kim, Boom-Soo (Department of Electronic Engineering, Myongji University)
Hong, Sang-Jeen (Department of Electronic Engineering, Myongji University)
Publication Information
Transactions on Electrical and Electronic Materials / v.13, no.3, 2012 , pp. 139-143 More about this Journal
Abstract
Optical emission spectroscopy (OES) is often used for real-time analysis of the plasma processes. OES has been suggested as a primary plasma process monitoring tool. It has the advantage of non-invasive in-situ monitoring capability but selecting the proper wavelengths for the analysis of OES data generally relies on empirically established methods. In this paper, we propose a practical method for the selection of OES wavelength peaks for the analysis of plasma etch process and this is done by investigating reactants and by-product gas species that reside in the plasma etch chamber. Wavelength selection criteria are based on the standard deviation and correlation coefficients. Moreover, chemical actinometry is employed for the normalization of the selected wavelengths. We also present the importance of chemical actinometry of OES data for quantitative analysis of plasma. Then, the suggested OES peak selection method is employed.. This method is used to find out the reason behind abnormal etching of PR erosion during a series of $SiO_2$ etch processes using the same recipe. From the experimental verification, we convinced that OES is not only capable for real-time detection of abnormal plasma process but it is also useful for the analysis of suspicious plasma behavior.
Keywords
Optical emission spectroscopy; Plasma etch; In-situ monitoring; Advanced process control;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Moyne and B. Schulze, IEEE Trans. Semi Manufac., 23, 221 (2010) [DOI: 10.1109/TSM.2010.2041294].   DOI   ScienceOn
2 K. H. Baek, Y. J. Jung, G. J. Min, C. J. Kang, H. K. Cho and J. T. Moon, J. Vac. Sci. Tech. B, 23, 125 (2005). [DOI: 10.1116/1/1839913]   DOI   ScienceOn
3 M. Nisha, K. J. Saji, R. S. Aijmaha, N. V. Joshy and M. K. Jayaraj, J. Appl. Phys. 99, 033304 (2006) [DOI: 10.1063/1.2171777].   DOI   ScienceOn
4 S. J. Hong and G. S. May, IEEE Trans. Ind. Elec. Soc. 52, 1063 (2005) [DOI: 10.1109/TIE.2005.851663].   DOI   ScienceOn
5 H. H. Yue, S. J. Qin, J. Wiseman and A. Toprac, J. Vac. Sci. Technol. A, 19, 66 (2001) [DOI: 10.1116/1.1331294].   DOI   ScienceOn
6 H. H. Yue, S. J. Qin, R. J. Markle, C. Nauert and M. Gatto, IEEE Trans. Semi. Manufac. 13, 374 (2000) [DOI: 10.1109/66.857948].   DOI   ScienceOn
7 D. A. White, D. Boning, S. W. Butler and G. G. Barna, IEEE Trans. Semi. Manufac. 10, 52 (1997) [DOI: 10.1109/66.554484].   DOI   ScienceOn
8 J. W. Coburn and M. Chen, J. Appl. Phys. 51, 3134 (1980) [DOI: 10/1063/1.328060].   DOI   ScienceOn
9 R. Chen, H. Huang, C. J. Spanos, and M. Catto, J. Vac. Sci. A, 14, 1901 (1996) [DOI: 10.1116/1.580357].   DOI   ScienceOn
10 V. Tarnovsky, P. Kurunczi, D. Rogozhnikov and K. Becker, Int. J. Mass Spectroscopy and Ion Processes, 128, 181 (1993) [DOI: 10.1016/0168-1176(93)87067-3].   DOI   ScienceOn